blob: 698d3645be6efe87832e7fabed1a917aa32966f1 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "common/config.h"
#include "gen_cpp/AgentService_types.h"
#include "gen_cpp/olap_file.pb.h"
#include "io/fs/local_file_system.h"
#include "olap/data_dir.h"
#include "olap/row_cursor.h"
#include "olap/rowset/beta_rowset_reader.h"
#include "olap/rowset/beta_rowset_writer.h"
#include "olap/rowset/rowset_factory.h"
#include "olap/rowset/rowset_reader_context.h"
#include "olap/rowset/rowset_writer.h"
#include "olap/rowset/rowset_writer_context.h"
#include "olap/rowset/segment_v2/segment_writer.h"
#include "olap/storage_engine.h"
#include "olap/tablet_meta.h"
#include "olap/tablet_schema.h"
#include "olap/utils.h"
#include "runtime/exec_env.h"
#include "runtime/memory/mem_tracker.h"
#include "util/slice.h"
namespace doris {
using namespace ErrorCode;
static const uint32_t MAX_PATH_LEN = 1024;
static StorageEngine* l_engine = nullptr;
static const std::string lTestDir = "./data_test/data/segcompaction_test";
constexpr static std::string_view tmp_dir = "./data_test/tmp";
class SegCompactionTest : public testing::Test {
public:
SegCompactionTest() = default;
void SetUp() {
config::enable_segcompaction = true;
config::tablet_map_shard_size = 1;
config::txn_map_shard_size = 1;
config::txn_shard_size = 1;
config::inverted_index_fd_number_limit_percent = 0;
char buffer[MAX_PATH_LEN];
EXPECT_NE(getcwd(buffer, MAX_PATH_LEN), nullptr);
config::storage_root_path = std::string(buffer) + "/data_test";
auto st = io::global_local_filesystem()->delete_directory(config::storage_root_path);
ASSERT_TRUE(st.ok()) << st;
st = io::global_local_filesystem()->create_directory(config::storage_root_path);
ASSERT_TRUE(st.ok()) << st;
std::vector<StorePath> paths;
paths.emplace_back(config::storage_root_path, -1);
// tmp dir
EXPECT_TRUE(io::global_local_filesystem()->delete_directory(tmp_dir).ok());
EXPECT_TRUE(io::global_local_filesystem()->create_directory(tmp_dir).ok());
paths.emplace_back(std::string(tmp_dir), 1024000000);
auto tmp_file_dirs = std::make_unique<segment_v2::TmpFileDirs>(paths);
EXPECT_TRUE(tmp_file_dirs->init().ok());
ExecEnv::GetInstance()->set_tmp_file_dir(std::move(tmp_file_dirs));
// use memory limit
int64_t inverted_index_cache_limit = 0;
_inverted_index_searcher_cache = std::unique_ptr<segment_v2::InvertedIndexSearcherCache>(
InvertedIndexSearcherCache::create_global_instance(inverted_index_cache_limit,
256));
ExecEnv::GetInstance()->set_inverted_index_searcher_cache(
_inverted_index_searcher_cache.get());
doris::EngineOptions options;
options.store_paths = paths;
auto engine = std::make_unique<StorageEngine>(options);
Status s = engine->open();
EXPECT_TRUE(s.ok()) << s.to_string();
l_engine = engine.get();
ExecEnv::GetInstance()->set_storage_engine(std::move(engine));
s = ThreadPoolBuilder("SegCompactionTaskThreadPool")
.set_min_threads(config::segcompaction_num_threads)
.set_max_threads(config::segcompaction_num_threads)
.build(&l_engine->_seg_compaction_thread_pool);
EXPECT_TRUE(s.ok()) << s.to_string();
_data_dir = std::make_unique<DataDir>(*l_engine, lTestDir);
static_cast<void>(_data_dir->update_capacity());
EXPECT_TRUE(io::global_local_filesystem()->create_directory(lTestDir).ok());
}
void TearDown() {
config::enable_segcompaction = false;
ExecEnv* exec_env = doris::ExecEnv::GetInstance();
l_engine = nullptr;
exec_env->set_storage_engine(nullptr);
exec_env->set_inverted_index_searcher_cache(nullptr);
}
protected:
OlapReaderStatistics _stats;
bool check_dir(std::vector<std::string>& vec) {
std::vector<std::string> result;
for (const auto& entry : std::filesystem::directory_iterator(lTestDir)) {
result.push_back(std::filesystem::path(entry.path()).filename());
}
LOG(INFO) << "expected ls:" << std::endl;
for (auto& i : vec) {
LOG(INFO) << i;
}
LOG(INFO) << "acutal ls:" << std::endl;
for (auto& i : result) {
LOG(INFO) << i;
}
if (result.size() != vec.size()) {
return false;
} else {
for (auto& i : vec) {
if (std::find(result.begin(), result.end(), i) == result.end()) {
return false;
}
}
}
return true;
}
// (k1 int, k2 varchar(20), k3 int) keys (k1, k2)
void create_tablet_schema(TabletSchemaSPtr tablet_schema, KeysType keystype,
int num_value_col = 1) {
TabletSchemaPB tablet_schema_pb;
tablet_schema_pb.set_keys_type(keystype);
tablet_schema_pb.set_num_short_key_columns(2);
tablet_schema_pb.set_num_rows_per_row_block(1024);
tablet_schema_pb.set_compress_kind(COMPRESS_NONE);
tablet_schema_pb.set_next_column_unique_id(4);
tablet_schema_pb.set_inverted_index_storage_format(InvertedIndexStorageFormatPB::V2);
ColumnPB* column_1 = tablet_schema_pb.add_column();
column_1->set_unique_id(1);
column_1->set_name("k1");
column_1->set_type("INT");
column_1->set_is_key(true);
column_1->set_length(4);
column_1->set_index_length(4);
column_1->set_is_nullable(true);
column_1->set_is_bf_column(false);
auto tablet_index_1 = tablet_schema_pb.add_index();
tablet_index_1->set_index_id(1);
tablet_index_1->set_index_name("column_1");
tablet_index_1->set_index_type(IndexType::INVERTED);
tablet_index_1->add_col_unique_id(1);
ColumnPB* column_2 = tablet_schema_pb.add_column();
column_2->set_unique_id(2);
column_2->set_name("k2");
column_2->set_type(
"INT"); // TODO change to varchar(20) when dict encoding for string is supported
column_2->set_length(4);
column_2->set_index_length(4);
column_2->set_is_nullable(true);
column_2->set_is_key(true);
column_2->set_is_nullable(true);
column_2->set_is_bf_column(false);
auto tablet_index_2 = tablet_schema_pb.add_index();
tablet_index_2->set_index_id(2);
tablet_index_2->set_index_name("column_2");
tablet_index_2->set_index_type(IndexType::INVERTED);
tablet_index_2->add_col_unique_id(2);
for (int i = 1; i <= num_value_col; i++) {
ColumnPB* v_column = tablet_schema_pb.add_column();
v_column->set_unique_id(2 + i);
v_column->set_name(fmt::format("v{}", i));
v_column->set_type("INT");
v_column->set_length(4);
v_column->set_is_key(false);
v_column->set_is_nullable(false);
v_column->set_is_bf_column(false);
v_column->set_default_value(std::to_string(i * 10));
v_column->set_aggregation("SUM");
}
tablet_schema->init_from_pb(tablet_schema_pb);
}
void construct_column(ColumnPB* column_pb, TabletIndexPB* tablet_index, int64_t index_id,
const std::string& index_name, int32_t col_unique_id,
const std::string& column_type, const std::string& column_name,
bool parser = false) {
column_pb->set_unique_id(col_unique_id);
column_pb->set_name(column_name);
column_pb->set_type(column_type);
column_pb->set_is_key(false);
column_pb->set_is_nullable(true);
tablet_index->set_index_id(index_id);
tablet_index->set_index_name(index_name);
tablet_index->set_index_type(IndexType::INVERTED);
tablet_index->add_col_unique_id(col_unique_id);
if (parser) {
auto* properties = tablet_index->mutable_properties();
(*properties)[INVERTED_INDEX_PARSER_KEY] = INVERTED_INDEX_PARSER_UNICODE;
}
}
// use different id to avoid conflict
void create_rowset_writer_context(int64_t id, TabletSchemaSPtr tablet_schema,
RowsetWriterContext* rowset_writer_context) {
RowsetId rowset_id;
rowset_id.init(id);
// rowset_writer_context->data_dir = _data_dir.get();
rowset_writer_context->rowset_id = rowset_id;
rowset_writer_context->tablet_id = 12345;
rowset_writer_context->tablet_schema_hash = 1111;
rowset_writer_context->partition_id = 10;
rowset_writer_context->rowset_type = BETA_ROWSET;
rowset_writer_context->tablet_path = lTestDir;
rowset_writer_context->rowset_state = VISIBLE;
rowset_writer_context->tablet_schema = tablet_schema;
rowset_writer_context->version.first = 10;
rowset_writer_context->version.second = 10;
#if 0
RuntimeProfile profile("CreateTablet");
TCreateTabletReq req;
req.table_id =
req.tablet_id =
req.tablet_scheme =
req.partition_id =
l_engine->create_tablet(req, &profile);
rowset_writer_context->tablet = l_engine->tablet_manager()->get_tablet(TTabletId tablet_id);
#endif
TabletMetaSharedPtr tablet_meta = std::make_shared<TabletMeta>();
tablet_meta->_tablet_id = 1;
static_cast<void>(tablet_meta->set_partition_id(10000));
tablet_meta->_schema = tablet_schema;
auto tablet = std::make_shared<Tablet>(*l_engine, tablet_meta, _data_dir.get(), "test_str");
// tablet->key
rowset_writer_context->tablet = tablet;
rowset_writer_context->enable_segcompaction = true;
}
void create_and_init_rowset_reader(Rowset* rowset, RowsetReaderContext& context,
RowsetReaderSharedPtr* result) {
auto s = rowset->create_reader(result);
EXPECT_EQ(Status::OK(), s);
EXPECT_TRUE(*result != nullptr);
s = (*result)->init(&context);
EXPECT_EQ(Status::OK(), s);
}
private:
std::unique_ptr<DataDir> _data_dir;
std::unique_ptr<InvertedIndexSearcherCache> _inverted_index_searcher_cache;
};
TEST_F(SegCompactionTest, SegCompactionThenRead) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
const int num_segments = 15;
const uint32_t rows_per_segment = 4096;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
config::segcompaction_batch_size = 10;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10047, tablet_schema, &writer_context);
auto res = RowsetFactory::create_rowset_writer(*l_engine, writer_context, false);
EXPECT_TRUE(res.has_value()) << res.error();
auto rowset_writer = std::move(res).value();
EXPECT_EQ(Status::OK(), s);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := rid
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
EXPECT_EQ(Status::OK(), rowset_writer->build(rowset));
std::vector<std::string> ls;
ls.push_back("10047_0.dat");
ls.push_back("10047_1.dat");
ls.push_back("10047_2.dat");
ls.push_back("10047_3.dat");
ls.push_back("10047_4.dat");
ls.push_back("10047_5.dat");
ls.push_back("10047_6.dat");
ls.push_back("10047_0.idx");
ls.push_back("10047_1.idx");
ls.push_back("10047_2.idx");
ls.push_back("10047_3.idx");
ls.push_back("10047_4.idx");
ls.push_back("10047_5.idx");
ls.push_back("10047_6.idx");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = ReaderType::READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
EXPECT_EQ(100 * v3 + k2, k1);
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(""), s);
EXPECT_EQ(rowset->rowset_meta()->num_rows(), num_rows_read);
EXPECT_EQ(num_rows_read, num_segments * rows_per_segment);
auto beta_rowset = std::dynamic_pointer_cast<BetaRowset>(rowset);
std::vector<uint32_t> segment_num_rows;
OlapReaderStatistics stats;
EXPECT_TRUE(beta_rowset->get_segment_num_rows(&segment_num_rows, &stats).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_EQ(total_num_rows, num_rows_read);
}
}
}
TEST_F(SegCompactionTest, SegCompactionInterleaveWithBig_ooooOOoOooooooooO) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10048, tablet_schema, &writer_context);
auto res = RowsetFactory::create_rowset_writer(*l_engine, writer_context, false);
EXPECT_TRUE(res.has_value()) << res.error();
auto rowset_writer = std::move(res).value();
EXPECT_EQ(Status::OK(), s);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := 4096 * i + rid
int num_segments = 4;
uint32_t rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 2;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 8;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
EXPECT_EQ(Status::OK(), rowset_writer->build(rowset));
std::vector<std::string> ls;
// ooooOOoOooooooooO
ls.push_back("10048_0.dat"); // oooo
ls.push_back("10048_1.dat"); // O
ls.push_back("10048_2.dat"); // O
ls.push_back("10048_3.dat"); // o
ls.push_back("10048_4.dat"); // O
ls.push_back("10048_5.dat"); // oooooooo
ls.push_back("10048_6.dat"); // O
ls.push_back("10048_0.idx"); // oooo
ls.push_back("10048_1.idx"); // O
ls.push_back("10048_2.idx"); // O
ls.push_back("10048_3.idx"); // o
ls.push_back("10048_4.idx"); // O
ls.push_back("10048_5.idx"); // oooooooo
ls.push_back("10048_6.idx"); // O
EXPECT_TRUE(check_dir(ls));
}
}
TEST_F(SegCompactionTest, SegCompactionInterleaveWithBig_OoOoO) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, DUP_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
config::segcompaction_batch_size = 5;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10049, tablet_schema, &writer_context);
auto res = RowsetFactory::create_rowset_writer(*l_engine, writer_context, false);
EXPECT_TRUE(res.has_value()) << res.error();
auto rowset_writer = std::move(res).value();
EXPECT_EQ(Status::OK(), s);
// for segment "i", row "rid"
// k1 := rid*10 + i
// k2 := k1 * 10
// k3 := 4096 * i + rid
int num_segments = 1;
uint32_t rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 4096;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
}
num_segments = 1;
rows_per_segment = 6400;
for (int i = 0; i < num_segments; ++i) {
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
for (int rid = 0; rid < rows_per_segment; ++rid) {
uint32_t k1 = rid * 100 + i;
uint32_t k2 = i;
uint32_t k3 = rid;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
}
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
}
EXPECT_EQ(Status::OK(), rowset_writer->build(rowset));
std::vector<std::string> ls;
ls.push_back("10049_0.dat"); // O
ls.push_back("10049_1.dat"); // o
ls.push_back("10049_2.dat"); // O
ls.push_back("10049_3.dat"); // o
ls.push_back("10049_4.dat"); // O
ls.push_back("10049_0.idx"); // O
ls.push_back("10049_1.idx"); // o
ls.push_back("10049_2.idx"); // O
ls.push_back("10049_3.idx"); // o
ls.push_back("10049_4.idx"); // O
EXPECT_TRUE(check_dir(ls));
}
}
TEST_F(SegCompactionTest, SegCompactionThenReadUniqueTableSmall) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, UNIQUE_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
config::segcompaction_batch_size = 3;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10051, tablet_schema, &writer_context);
auto res = RowsetFactory::create_rowset_writer(*l_engine, writer_context, false);
EXPECT_TRUE(res.has_value()) << res.error();
auto rowset_writer = std::move(res).value();
EXPECT_EQ(Status::OK(), s);
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
// segment#0
k1 = k2 = 1;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 4;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 6;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#1
k1 = k2 = 2;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 4;
k3 = 2;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 6;
k3 = 2;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#2
k1 = k2 = 3;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 6;
k3 = 3;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 9;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#3
k1 = k2 = 4;
k3 = 3;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 9;
k3 = 2;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 12;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#4
k1 = k2 = 25;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#5
k1 = k2 = 26;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
EXPECT_EQ(Status::OK(), rowset_writer->build(rowset));
std::vector<std::string> ls;
ls.push_back("10051_0.dat");
ls.push_back("10051_1.dat");
ls.push_back("10051_2.dat");
ls.push_back("10051_3.dat");
ls.push_back("10051_0.idx");
ls.push_back("10051_1.idx");
ls.push_back("10051_2.idx");
ls.push_back("10051_3.idx");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = ReaderType::READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
reader_context.is_unique = true;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
std::cout << "k1 k2 k3: " << k1 << " " << k2 << " " << v3 << std::endl;
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(""), s);
// duplicated keys between segments are counted duplicately
// so actual read by rowset reader is less or equal to it
EXPECT_GE(rowset->rowset_meta()->num_rows(), num_rows_read);
auto beta_rowset = std::dynamic_pointer_cast<BetaRowset>(rowset);
std::vector<uint32_t> segment_num_rows;
OlapReaderStatistics stats;
EXPECT_TRUE(beta_rowset->get_segment_num_rows(&segment_num_rows, &stats).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_GE(total_num_rows, num_rows_read);
}
}
}
TEST_F(SegCompactionTest, CreateSegCompactionWriter) {
config::enable_segcompaction = true;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
TabletSchemaPB schema_pb;
schema_pb.set_keys_type(KeysType::DUP_KEYS);
schema_pb.set_inverted_index_storage_format(InvertedIndexStorageFormatPB::V2);
construct_column(schema_pb.add_column(), schema_pb.add_index(), 10000, "key_index", 0, "INT",
"key");
construct_column(schema_pb.add_column(), schema_pb.add_index(), 10001, "v1_index", 1, "STRING",
"v1");
construct_column(schema_pb.add_column(), schema_pb.add_index(), 10002, "v2_index", 2, "STRING",
"v2", true);
construct_column(schema_pb.add_column(), schema_pb.add_index(), 10003, "v3_index", 3, "INT",
"v3");
tablet_schema.reset(new TabletSchema);
tablet_schema->init_from_pb(schema_pb);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
config::segcompaction_batch_size = 3;
{
RowsetWriterContext writer_context;
create_rowset_writer_context(10052, tablet_schema, &writer_context);
auto res = RowsetFactory::create_rowset_writer(*l_engine, writer_context, false);
EXPECT_TRUE(res.has_value()) << res.error();
auto rowset_writer = std::move(res).value();
auto beta_rowset_writer = dynamic_cast<BetaRowsetWriter*>(rowset_writer.get());
EXPECT_TRUE(beta_rowset_writer != nullptr);
std::unique_ptr<segment_v2::SegmentWriter> writer = nullptr;
auto status = beta_rowset_writer->create_segment_writer_for_segcompaction(&writer, 0, 1);
EXPECT_TRUE(beta_rowset_writer != nullptr);
EXPECT_TRUE(status == Status::OK());
int64_t inverted_index_file_size = 0;
status = writer->close_inverted_index(&inverted_index_file_size);
EXPECT_TRUE(status == Status::OK());
EXPECT_TRUE(inverted_index_file_size == 0);
}
}
TEST_F(SegCompactionTest, SegCompactionThenReadAggTableSmall) {
config::enable_segcompaction = true;
Status s;
TabletSchemaSPtr tablet_schema = std::make_shared<TabletSchema>();
create_tablet_schema(tablet_schema, AGG_KEYS);
RowsetSharedPtr rowset;
config::segcompaction_candidate_max_rows = 6000; // set threshold above
// rows_per_segment
config::segcompaction_batch_size = 3;
{ // write `num_segments * rows_per_segment` rows to rowset
RowsetWriterContext writer_context;
create_rowset_writer_context(10052, tablet_schema, &writer_context);
auto res = RowsetFactory::create_rowset_writer(*l_engine, writer_context, false);
EXPECT_TRUE(res.has_value()) << res.error();
auto rowset_writer = std::move(res).value();
EXPECT_EQ(Status::OK(), s);
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
vectorized::Block block = tablet_schema->create_block();
auto columns = block.mutate_columns();
// segment#0
k1 = k2 = 1;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 4;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 6;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#1
k1 = k2 = 2;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 4;
k3 = 2;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 6;
k3 = 2;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#2
k1 = k2 = 3;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 6;
k3 = 3;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 9;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#3
k1 = k2 = 4;
k3 = 3;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 9;
k3 = 2;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
k1 = k2 = 12;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#4
k1 = k2 = 25;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
// segment#5
k1 = k2 = 26;
k3 = 1;
columns[0]->insert_data((const char*)&k1, sizeof(k1));
columns[1]->insert_data((const char*)&k2, sizeof(k2));
columns[2]->insert_data((const char*)&k3, sizeof(k3));
s = rowset_writer->add_block(&block);
EXPECT_TRUE(s.ok());
s = rowset_writer->flush();
EXPECT_EQ(Status::OK(), s);
sleep(1);
EXPECT_EQ(Status::OK(), rowset_writer->build(rowset));
std::vector<std::string> ls;
ls.push_back("10052_0.dat");
ls.push_back("10052_1.dat");
ls.push_back("10052_2.dat");
ls.push_back("10052_3.dat");
ls.push_back("10052_0.idx");
ls.push_back("10052_1.idx");
ls.push_back("10052_2.idx");
ls.push_back("10052_3.idx");
EXPECT_TRUE(check_dir(ls));
}
{ // read
RowsetReaderContext reader_context;
reader_context.tablet_schema = tablet_schema;
// use this type to avoid cache from other ut
reader_context.reader_type = ReaderType::READER_CUMULATIVE_COMPACTION;
reader_context.need_ordered_result = true;
std::vector<uint32_t> return_columns = {0, 1, 2};
reader_context.return_columns = &return_columns;
reader_context.stats = &_stats;
// reader_context.is_unique = true;
// without predicates
{
RowsetReaderSharedPtr rowset_reader;
create_and_init_rowset_reader(rowset.get(), reader_context, &rowset_reader);
uint32_t num_rows_read = 0;
bool eof = false;
while (!eof) {
std::shared_ptr<vectorized::Block> output_block =
std::make_shared<vectorized::Block>(
tablet_schema->create_block(return_columns));
s = rowset_reader->next_block(output_block.get());
if (s != Status::OK()) {
eof = true;
}
EXPECT_GT(output_block->rows(), 0);
EXPECT_EQ(return_columns.size(), output_block->columns());
for (int i = 0; i < output_block->rows(); ++i) {
vectorized::ColumnPtr col0 = output_block->get_by_position(0).column;
vectorized::ColumnPtr col1 = output_block->get_by_position(1).column;
vectorized::ColumnPtr col2 = output_block->get_by_position(2).column;
auto field1 = (*col0)[i];
auto field2 = (*col1)[i];
auto field3 = (*col2)[i];
uint32_t k1 = *reinterpret_cast<uint32_t*>((char*)(&field1));
uint32_t k2 = *reinterpret_cast<uint32_t*>((char*)(&field2));
uint32_t v3 = *reinterpret_cast<uint32_t*>((char*)(&field3));
// dup keys may exist between segments, but not in single segment
std::cout << "k1 k2 k3: " << k1 << " " << k2 << " " << v3 << std::endl;
num_rows_read++;
}
output_block->clear();
}
EXPECT_EQ(Status::Error<END_OF_FILE>(""), s);
// duplicated keys between segments are counted duplicately
// so actual read by rowset reader is less or equal to it
EXPECT_GE(rowset->rowset_meta()->num_rows(), num_rows_read);
auto beta_rowset = std::dynamic_pointer_cast<BetaRowset>(rowset);
std::vector<uint32_t> segment_num_rows;
OlapReaderStatistics stats;
EXPECT_TRUE(beta_rowset->get_segment_num_rows(&segment_num_rows, &stats).ok());
size_t total_num_rows = 0;
for (const auto& i : segment_num_rows) {
total_num_rows += i;
}
EXPECT_GE(total_num_rows, num_rows_read);
}
}
}
} // namespace doris
// @brief Test Stub