| // Copyright (c) 2011 The LevelDB Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. See the AUTHORS file for names of contributors. |
| |
| #include "olap/lru_cache.h" |
| |
| #include <cstdlib> |
| #include <mutex> |
| #include <new> |
| #include <sstream> |
| #include <string> |
| |
| #include "util/metrics.h" |
| #include "util/time.h" |
| |
| using std::string; |
| using std::stringstream; |
| |
| namespace doris { |
| #include "common/compile_check_begin.h" |
| |
| DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(cache_capacity, MetricUnit::BYTES); |
| DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(cache_usage, MetricUnit::BYTES); |
| DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(cache_element_count, MetricUnit::NOUNIT); |
| DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(cache_usage_ratio, MetricUnit::NOUNIT); |
| DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(cache_lookup_count, MetricUnit::OPERATIONS); |
| DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(cache_hit_count, MetricUnit::OPERATIONS); |
| DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(cache_miss_count, MetricUnit::OPERATIONS); |
| DEFINE_COUNTER_METRIC_PROTOTYPE_2ARG(cache_stampede_count, MetricUnit::OPERATIONS); |
| DEFINE_GAUGE_METRIC_PROTOTYPE_2ARG(cache_hit_ratio, MetricUnit::NOUNIT); |
| |
| uint32_t CacheKey::hash(const char* data, size_t n, uint32_t seed) const { |
| // Similar to murmur hash |
| const uint32_t m = 0xc6a4a793; |
| const uint32_t r = 24; |
| const char* limit = data + n; |
| uint32_t h = seed ^ (static_cast<uint32_t>(n) * m); |
| |
| // Pick up four bytes at a time |
| while (data + 4 <= limit) { |
| uint32_t w = _decode_fixed32(data); |
| data += 4; |
| h += w; |
| h *= m; |
| h ^= (h >> 16); |
| } |
| |
| // Pick up remaining bytes |
| switch (limit - data) { |
| case 3: |
| h += static_cast<unsigned char>(data[2]) << 16; |
| |
| // fall through |
| case 2: |
| h += static_cast<unsigned char>(data[1]) << 8; |
| |
| // fall through |
| case 1: |
| h += static_cast<unsigned char>(data[0]); |
| h *= m; |
| h ^= (h >> r); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return h; |
| } |
| |
| HandleTable::~HandleTable() { |
| delete[] _list; |
| } |
| |
| // LRU cache implementation |
| LRUHandle* HandleTable::lookup(const CacheKey& key, uint32_t hash) { |
| return *_find_pointer(key, hash); |
| } |
| |
| LRUHandle* HandleTable::insert(LRUHandle* h) { |
| LRUHandle** ptr = _find_pointer(h->key(), h->hash); |
| LRUHandle* old = *ptr; |
| h->next_hash = old ? old->next_hash : nullptr; |
| *ptr = h; |
| |
| if (old == nullptr) { |
| ++_elems; |
| if (_elems > _length) { |
| // Since each cache entry is fairly large, we aim for a small |
| // average linked list length (<= 1). |
| _resize(); |
| } |
| } |
| |
| return old; |
| } |
| |
| LRUHandle* HandleTable::remove(const CacheKey& key, uint32_t hash) { |
| LRUHandle** ptr = _find_pointer(key, hash); |
| LRUHandle* result = *ptr; |
| |
| if (result != nullptr) { |
| *ptr = result->next_hash; |
| _elems--; |
| } |
| |
| return result; |
| } |
| |
| bool HandleTable::remove(const LRUHandle* h) { |
| LRUHandle** ptr = &(_list[h->hash & (_length - 1)]); |
| while (*ptr != nullptr && *ptr != h) { |
| ptr = &(*ptr)->next_hash; |
| } |
| |
| LRUHandle* result = *ptr; |
| if (result != nullptr) { |
| *ptr = result->next_hash; |
| _elems--; |
| return true; |
| } |
| return false; |
| } |
| |
| LRUHandle** HandleTable::_find_pointer(const CacheKey& key, uint32_t hash) { |
| LRUHandle** ptr = &(_list[hash & (_length - 1)]); |
| while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { |
| ptr = &(*ptr)->next_hash; |
| } |
| |
| return ptr; |
| } |
| |
| void HandleTable::_resize() { |
| uint32_t new_length = 16; |
| while (new_length < _elems * 1.5) { |
| new_length *= 2; |
| } |
| |
| auto** new_list = new (std::nothrow) LRUHandle*[new_length]; |
| memset(new_list, 0, sizeof(new_list[0]) * new_length); |
| |
| uint32_t count = 0; |
| for (uint32_t i = 0; i < _length; i++) { |
| LRUHandle* h = _list[i]; |
| while (h != nullptr) { |
| LRUHandle* next = h->next_hash; |
| uint32_t hash = h->hash; |
| LRUHandle** ptr = &new_list[hash & (new_length - 1)]; |
| h->next_hash = *ptr; |
| *ptr = h; |
| h = next; |
| count++; |
| } |
| } |
| |
| DCHECK_EQ(_elems, count); |
| delete[] _list; |
| _list = new_list; |
| _length = new_length; |
| } |
| |
| uint32_t HandleTable::element_count() const { |
| return _elems; |
| } |
| |
| LRUCache::LRUCache(LRUCacheType type, bool is_lru_k) : _type(type), _is_lru_k(is_lru_k) { |
| // Make empty circular linked list |
| _lru_normal.next = &_lru_normal; |
| _lru_normal.prev = &_lru_normal; |
| _lru_durable.next = &_lru_durable; |
| _lru_durable.prev = &_lru_durable; |
| } |
| |
| LRUCache::~LRUCache() { |
| prune(); |
| } |
| |
| PrunedInfo LRUCache::set_capacity(size_t capacity) { |
| LRUHandle* last_ref_list = nullptr; |
| { |
| std::lock_guard l(_mutex); |
| if (capacity > _capacity) { |
| _capacity = capacity; |
| return {0, 0}; |
| } |
| _capacity = capacity; |
| _evict_from_lru(0, &last_ref_list); |
| } |
| |
| int64_t pruned_count = 0; |
| int64_t pruned_size = 0; |
| while (last_ref_list != nullptr) { |
| ++pruned_count; |
| pruned_size += last_ref_list->total_size; |
| LRUHandle* next = last_ref_list->next; |
| last_ref_list->free(); |
| last_ref_list = next; |
| } |
| return {pruned_count, pruned_size}; |
| } |
| |
| uint64_t LRUCache::get_lookup_count() { |
| std::lock_guard l(_mutex); |
| return _lookup_count; |
| } |
| |
| uint64_t LRUCache::get_hit_count() { |
| std::lock_guard l(_mutex); |
| return _hit_count; |
| } |
| |
| uint64_t LRUCache::get_stampede_count() { |
| std::lock_guard l(_mutex); |
| return _stampede_count; |
| } |
| |
| uint64_t LRUCache::get_miss_count() { |
| std::lock_guard l(_mutex); |
| return _miss_count; |
| } |
| |
| size_t LRUCache::get_usage() { |
| std::lock_guard l(_mutex); |
| return _usage; |
| } |
| |
| size_t LRUCache::get_capacity() { |
| std::lock_guard l(_mutex); |
| return _capacity; |
| } |
| |
| size_t LRUCache::get_element_count() { |
| std::lock_guard l(_mutex); |
| return _table.element_count(); |
| } |
| |
| bool LRUCache::_unref(LRUHandle* e) { |
| DCHECK(e->refs > 0); |
| e->refs--; |
| return e->refs == 0; |
| } |
| |
| void LRUCache::_lru_remove(LRUHandle* e) { |
| e->next->prev = e->prev; |
| e->prev->next = e->next; |
| e->prev = e->next = nullptr; |
| |
| if (_cache_value_check_timestamp) { |
| if (e->priority == CachePriority::NORMAL) { |
| auto pair = std::make_pair(_cache_value_time_extractor(e->value), e); |
| auto found_it = _sorted_normal_entries_with_timestamp.find(pair); |
| if (found_it != _sorted_normal_entries_with_timestamp.end()) { |
| _sorted_normal_entries_with_timestamp.erase(found_it); |
| } |
| } else if (e->priority == CachePriority::DURABLE) { |
| auto pair = std::make_pair(_cache_value_time_extractor(e->value), e); |
| auto found_it = _sorted_durable_entries_with_timestamp.find(pair); |
| if (found_it != _sorted_durable_entries_with_timestamp.end()) { |
| _sorted_durable_entries_with_timestamp.erase(found_it); |
| } |
| } |
| } |
| } |
| |
| void LRUCache::_lru_append(LRUHandle* list, LRUHandle* e) { |
| // Make "e" newest entry by inserting just before *list |
| e->next = list; |
| e->prev = list->prev; |
| e->prev->next = e; |
| e->next->prev = e; |
| |
| // _cache_value_check_timestamp is true, |
| // means evict entry will depends on the timestamp asc set, |
| // the timestamp is updated by higher level caller, |
| // and the timestamp of hit entry is different with the insert entry, |
| // that is why need check timestamp to evict entry, |
| // in order to keep the survival time of hit entries |
| // longer than the entries just inserted, |
| // so use asc set to sorted these entries's timestamp and LRUHandle* |
| if (_cache_value_check_timestamp) { |
| if (e->priority == CachePriority::NORMAL) { |
| _sorted_normal_entries_with_timestamp.insert( |
| std::make_pair(_cache_value_time_extractor(e->value), e)); |
| } else if (e->priority == CachePriority::DURABLE) { |
| _sorted_durable_entries_with_timestamp.insert( |
| std::make_pair(_cache_value_time_extractor(e->value), e)); |
| } |
| } |
| } |
| |
| Cache::Handle* LRUCache::lookup(const CacheKey& key, uint32_t hash) { |
| std::lock_guard l(_mutex); |
| ++_lookup_count; |
| LRUHandle* e = _table.lookup(key, hash); |
| if (e != nullptr) { |
| // we get it from _table, so in_cache must be true |
| DCHECK(e->in_cache); |
| if (e->refs == 1) { |
| // only in LRU free list, remove it from list |
| _lru_remove(e); |
| } |
| e->refs++; |
| ++_hit_count; |
| e->last_visit_time = UnixMillis(); |
| } else { |
| ++_miss_count; |
| } |
| |
| // If key not exist in cache, and is lru k cache, and key in visits list, |
| // then move the key to beginning of the visits list. |
| // key in visits list indicates that the key has been inserted once after the cache is full. |
| if (e == nullptr && _is_lru_k) { |
| auto it = _visits_lru_cache_map.find(hash); |
| if (it != _visits_lru_cache_map.end()) { |
| _visits_lru_cache_list.splice(_visits_lru_cache_list.begin(), _visits_lru_cache_list, |
| it->second); |
| } |
| } |
| return reinterpret_cast<Cache::Handle*>(e); |
| } |
| |
| void LRUCache::release(Cache::Handle* handle) { |
| if (handle == nullptr) { |
| return; |
| } |
| auto* e = reinterpret_cast<LRUHandle*>(handle); |
| bool last_ref = false; |
| { |
| std::lock_guard l(_mutex); |
| // if last_ref is true, key may have been evict from the cache, |
| // or if it is lru k, first insert of key may have failed. |
| last_ref = _unref(e); |
| if (e->in_cache && e->refs == 1) { |
| // only exists in cache |
| if (_usage > _capacity) { |
| // take this opportunity and remove the item |
| bool removed = _table.remove(e); |
| DCHECK(removed); |
| e->in_cache = false; |
| _unref(e); |
| // `entry->in_cache = false` and `_usage -= entry->total_size;` and `_unref(entry)` should appear together. |
| // see the comment for old entry in `LRUCache::insert`. |
| _usage -= e->total_size; |
| last_ref = true; |
| } else { |
| // put it to LRU free list |
| if (e->priority == CachePriority::NORMAL) { |
| _lru_append(&_lru_normal, e); |
| } else if (e->priority == CachePriority::DURABLE) { |
| _lru_append(&_lru_durable, e); |
| } |
| } |
| } |
| } |
| |
| // free handle out of mutex |
| if (last_ref) { |
| e->free(); |
| } |
| } |
| |
| void LRUCache::_evict_from_lru_with_time(size_t total_size, LRUHandle** to_remove_head) { |
| // 1. evict normal cache entries |
| while ((_usage + total_size > _capacity || _check_element_count_limit()) && |
| !_sorted_normal_entries_with_timestamp.empty()) { |
| auto entry_pair = _sorted_normal_entries_with_timestamp.begin(); |
| LRUHandle* remove_handle = entry_pair->second; |
| DCHECK(remove_handle != nullptr); |
| DCHECK(remove_handle->priority == CachePriority::NORMAL); |
| _evict_one_entry(remove_handle); |
| remove_handle->next = *to_remove_head; |
| *to_remove_head = remove_handle; |
| } |
| |
| // 2. evict durable cache entries if need |
| while ((_usage + total_size > _capacity || _check_element_count_limit()) && |
| !_sorted_durable_entries_with_timestamp.empty()) { |
| auto entry_pair = _sorted_durable_entries_with_timestamp.begin(); |
| LRUHandle* remove_handle = entry_pair->second; |
| DCHECK(remove_handle != nullptr); |
| DCHECK(remove_handle->priority == CachePriority::DURABLE); |
| _evict_one_entry(remove_handle); |
| remove_handle->next = *to_remove_head; |
| *to_remove_head = remove_handle; |
| } |
| } |
| |
| void LRUCache::_evict_from_lru(size_t total_size, LRUHandle** to_remove_head) { |
| // 1. evict normal cache entries |
| while ((_usage + total_size > _capacity || _check_element_count_limit()) && |
| _lru_normal.next != &_lru_normal) { |
| LRUHandle* old = _lru_normal.next; |
| DCHECK(old->priority == CachePriority::NORMAL); |
| _evict_one_entry(old); |
| old->next = *to_remove_head; |
| *to_remove_head = old; |
| } |
| // 2. evict durable cache entries if need |
| while ((_usage + total_size > _capacity || _check_element_count_limit()) && |
| _lru_durable.next != &_lru_durable) { |
| LRUHandle* old = _lru_durable.next; |
| DCHECK(old->priority == CachePriority::DURABLE); |
| _evict_one_entry(old); |
| old->next = *to_remove_head; |
| *to_remove_head = old; |
| } |
| } |
| |
| void LRUCache::_evict_one_entry(LRUHandle* e) { |
| DCHECK(e->in_cache); |
| DCHECK(e->refs == 1); // LRU list contains elements which may be evicted |
| _lru_remove(e); |
| bool removed = _table.remove(e); |
| DCHECK(removed); |
| e->in_cache = false; |
| _unref(e); |
| // `entry->in_cache = false` and `_usage -= entry->total_size;` and `_unref(entry)` should appear together. |
| // see the comment for old entry in `LRUCache::insert`. |
| _usage -= e->total_size; |
| } |
| |
| bool LRUCache::_check_element_count_limit() { |
| return _element_count_capacity != 0 && _table.element_count() >= _element_count_capacity; |
| } |
| |
| // After cache is full, |
| // 1.Return false. If key has been inserted into the visits list before, |
| // key is allowed to be inserted into cache this time (this will trigger cache evict), |
| // and key is removed from the visits list. |
| // 2. Return true. If key not in visits list, insert it into visits list. |
| bool LRUCache::_lru_k_insert_visits_list(size_t total_size, visits_lru_cache_key visits_key) { |
| if (_usage + total_size > _capacity || |
| _check_element_count_limit()) { // this line no lock required |
| auto it = _visits_lru_cache_map.find(visits_key); |
| if (it != _visits_lru_cache_map.end()) { |
| _visits_lru_cache_usage -= it->second->second; |
| _visits_lru_cache_list.erase(it->second); |
| _visits_lru_cache_map.erase(it); |
| } else { |
| // _visits_lru_cache_list capacity is same as the cache itself. |
| // If _visits_lru_cache_list is full, some keys will also be evict. |
| while (_visits_lru_cache_usage + total_size > _capacity && |
| _visits_lru_cache_usage != 0) { |
| DCHECK(!_visits_lru_cache_map.empty()); |
| _visits_lru_cache_usage -= _visits_lru_cache_list.back().second; |
| _visits_lru_cache_map.erase(_visits_lru_cache_list.back().first); |
| _visits_lru_cache_list.pop_back(); |
| } |
| // 1. If true, insert key at the beginning of _visits_lru_cache_list. |
| // 2. If false, it means total_size > cache _capacity, preventing this insert. |
| if (_visits_lru_cache_usage + total_size <= _capacity) { |
| _visits_lru_cache_list.emplace_front(visits_key, total_size); |
| _visits_lru_cache_map[visits_key] = _visits_lru_cache_list.begin(); |
| _visits_lru_cache_usage += total_size; |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| Cache::Handle* LRUCache::insert(const CacheKey& key, uint32_t hash, void* value, size_t charge, |
| CachePriority priority) { |
| size_t handle_size = sizeof(LRUHandle) - 1 + key.size(); |
| auto* e = reinterpret_cast<LRUHandle*>(malloc(handle_size)); |
| e->value = value; |
| e->charge = charge; |
| e->key_length = key.size(); |
| // if LRUCacheType::NUMBER, charge not add handle_size, |
| // because charge at this time is no longer the memory size, but an weight. |
| e->total_size = (_type == LRUCacheType::SIZE ? handle_size + charge : charge); |
| e->hash = hash; |
| e->refs = 1; // only one for the returned handle. |
| e->next = e->prev = nullptr; |
| e->in_cache = false; |
| e->priority = priority; |
| e->type = _type; |
| memcpy(e->key_data, key.data(), key.size()); |
| e->last_visit_time = UnixMillis(); |
| |
| LRUHandle* to_remove_head = nullptr; |
| { |
| std::lock_guard l(_mutex); |
| |
| if (_is_lru_k && _lru_k_insert_visits_list(e->total_size, hash)) { |
| return reinterpret_cast<Cache::Handle*>(e); |
| } |
| |
| // Free the space following strict LRU policy until enough space |
| // is freed or the lru list is empty |
| if (_cache_value_check_timestamp) { |
| _evict_from_lru_with_time(e->total_size, &to_remove_head); |
| } else { |
| _evict_from_lru(e->total_size, &to_remove_head); |
| } |
| |
| // insert into the cache |
| // note that the cache might get larger than its capacity if not enough |
| // space was freed |
| auto* old = _table.insert(e); |
| e->in_cache = true; |
| _usage += e->total_size; |
| e->refs++; // one for the returned handle, one for LRUCache. |
| if (old != nullptr) { |
| _stampede_count++; |
| old->in_cache = false; |
| // `entry->in_cache = false` and `_usage -= entry->total_size;` and `_unref(entry)` should appear together. |
| // Whether the reference of the old entry is 0, the cache usage is subtracted here, |
| // because the old entry has been removed from the cache and should not be counted in the cache capacity, |
| // but the memory of the old entry is still tracked by the cache memory_tracker. |
| // After all the old handles are released, the old entry will be freed and the memory of the old entry |
| // will be released from the cache memory_tracker. |
| _usage -= old->total_size; |
| // if false, old entry is being used externally, just ref-- and sub _usage, |
| if (_unref(old)) { |
| // old is on LRU because it's in cache and its reference count |
| // was just 1 (Unref returned 0) |
| _lru_remove(old); |
| old->next = to_remove_head; |
| to_remove_head = old; |
| } |
| } |
| } |
| |
| // we free the entries here outside of mutex for |
| // performance reasons |
| while (to_remove_head != nullptr) { |
| LRUHandle* next = to_remove_head->next; |
| to_remove_head->free(); |
| to_remove_head = next; |
| } |
| |
| return reinterpret_cast<Cache::Handle*>(e); |
| } |
| |
| void LRUCache::erase(const CacheKey& key, uint32_t hash) { |
| LRUHandle* e = nullptr; |
| bool last_ref = false; |
| { |
| std::lock_guard l(_mutex); |
| e = _table.remove(key, hash); |
| if (e != nullptr) { |
| last_ref = _unref(e); |
| // if last_ref is false or in_cache is false, e must not be in lru |
| if (last_ref && e->in_cache) { |
| // locate in free list |
| _lru_remove(e); |
| } |
| e->in_cache = false; |
| // `entry->in_cache = false` and `_usage -= entry->total_size;` and `_unref(entry)` should appear together. |
| // see the comment for old entry in `LRUCache::insert`. |
| _usage -= e->total_size; |
| } |
| } |
| // free handle out of mutex, when last_ref is true, e must not be nullptr |
| if (last_ref) { |
| e->free(); |
| } |
| } |
| |
| PrunedInfo LRUCache::prune() { |
| LRUHandle* to_remove_head = nullptr; |
| { |
| std::lock_guard l(_mutex); |
| while (_lru_normal.next != &_lru_normal) { |
| LRUHandle* old = _lru_normal.next; |
| _evict_one_entry(old); |
| old->next = to_remove_head; |
| to_remove_head = old; |
| } |
| while (_lru_durable.next != &_lru_durable) { |
| LRUHandle* old = _lru_durable.next; |
| _evict_one_entry(old); |
| old->next = to_remove_head; |
| to_remove_head = old; |
| } |
| } |
| int64_t pruned_count = 0; |
| int64_t pruned_size = 0; |
| while (to_remove_head != nullptr) { |
| ++pruned_count; |
| pruned_size += to_remove_head->total_size; |
| LRUHandle* next = to_remove_head->next; |
| to_remove_head->free(); |
| to_remove_head = next; |
| } |
| return {pruned_count, pruned_size}; |
| } |
| |
| PrunedInfo LRUCache::prune_if(CachePrunePredicate pred, bool lazy_mode) { |
| LRUHandle* to_remove_head = nullptr; |
| { |
| std::lock_guard l(_mutex); |
| LRUHandle* p = _lru_normal.next; |
| while (p != &_lru_normal) { |
| LRUHandle* next = p->next; |
| if (pred(p)) { |
| _evict_one_entry(p); |
| p->next = to_remove_head; |
| to_remove_head = p; |
| } else if (lazy_mode) { |
| break; |
| } |
| p = next; |
| } |
| |
| p = _lru_durable.next; |
| while (p != &_lru_durable) { |
| LRUHandle* next = p->next; |
| if (pred(p)) { |
| _evict_one_entry(p); |
| p->next = to_remove_head; |
| to_remove_head = p; |
| } else if (lazy_mode) { |
| break; |
| } |
| p = next; |
| } |
| } |
| int64_t pruned_count = 0; |
| int64_t pruned_size = 0; |
| while (to_remove_head != nullptr) { |
| ++pruned_count; |
| pruned_size += to_remove_head->total_size; |
| LRUHandle* next = to_remove_head->next; |
| to_remove_head->free(); |
| to_remove_head = next; |
| } |
| return {pruned_count, pruned_size}; |
| } |
| |
| void LRUCache::for_each_entry(const std::function<void(const LRUHandle*)>& visitor) { |
| std::lock_guard l(_mutex); |
| for (LRUHandle* p = _lru_normal.next; p != &_lru_normal; p = p->next) { |
| visitor(p); |
| } |
| for (LRUHandle* p = _lru_durable.next; p != &_lru_durable; p = p->next) { |
| visitor(p); |
| } |
| } |
| |
| void LRUCache::set_cache_value_time_extractor(CacheValueTimeExtractor cache_value_time_extractor) { |
| _cache_value_time_extractor = cache_value_time_extractor; |
| } |
| |
| void LRUCache::set_cache_value_check_timestamp(bool cache_value_check_timestamp) { |
| _cache_value_check_timestamp = cache_value_check_timestamp; |
| } |
| |
| inline uint32_t ShardedLRUCache::_hash_slice(const CacheKey& s) { |
| return s.hash(s.data(), s.size(), 0); |
| } |
| |
| ShardedLRUCache::ShardedLRUCache(const std::string& name, size_t capacity, LRUCacheType type, |
| uint32_t num_shards, uint32_t total_element_count_capacity, |
| bool is_lru_k) |
| : _name(name), |
| _num_shard_bits(__builtin_ctz(num_shards)), |
| _num_shards(num_shards), |
| _last_id(1), |
| _capacity(capacity) { |
| CHECK(num_shards > 0) << "num_shards cannot be 0"; |
| CHECK_EQ((num_shards & (num_shards - 1)), 0) |
| << "num_shards should be power of two, but got " << num_shards; |
| |
| const size_t per_shard = (capacity + (_num_shards - 1)) / _num_shards; |
| const uint32_t per_shard_element_count_capacity = |
| (total_element_count_capacity + (_num_shards - 1)) / _num_shards; |
| auto** shards = new (std::nothrow) LRUCache*[_num_shards]; |
| for (int s = 0; s < _num_shards; s++) { |
| shards[s] = new LRUCache(type, is_lru_k); |
| shards[s]->set_capacity(per_shard); |
| shards[s]->set_element_count_capacity(per_shard_element_count_capacity); |
| } |
| _shards = shards; |
| |
| _entity = DorisMetrics::instance()->metric_registry()->register_entity( |
| std::string("lru_cache:") + name, {{"name", name}}); |
| _entity->register_hook(name, std::bind(&ShardedLRUCache::update_cache_metrics, this)); |
| INT_GAUGE_METRIC_REGISTER(_entity, cache_capacity); |
| INT_GAUGE_METRIC_REGISTER(_entity, cache_usage); |
| INT_GAUGE_METRIC_REGISTER(_entity, cache_element_count); |
| DOUBLE_GAUGE_METRIC_REGISTER(_entity, cache_usage_ratio); |
| INT_COUNTER_METRIC_REGISTER(_entity, cache_lookup_count); |
| INT_COUNTER_METRIC_REGISTER(_entity, cache_hit_count); |
| INT_COUNTER_METRIC_REGISTER(_entity, cache_stampede_count); |
| INT_COUNTER_METRIC_REGISTER(_entity, cache_miss_count); |
| DOUBLE_GAUGE_METRIC_REGISTER(_entity, cache_hit_ratio); |
| |
| _hit_count_bvar.reset(new bvar::Adder<uint64_t>("doris_cache", _name)); |
| _hit_count_per_second.reset(new bvar::PerSecond<bvar::Adder<uint64_t>>( |
| "doris_cache", _name + "_persecond", _hit_count_bvar.get(), 60)); |
| _lookup_count_bvar.reset(new bvar::Adder<uint64_t>("doris_cache", _name)); |
| _lookup_count_per_second.reset(new bvar::PerSecond<bvar::Adder<uint64_t>>( |
| "doris_cache", _name + "_persecond", _lookup_count_bvar.get(), 60)); |
| } |
| |
| ShardedLRUCache::ShardedLRUCache(const std::string& name, size_t capacity, LRUCacheType type, |
| uint32_t num_shards, |
| CacheValueTimeExtractor cache_value_time_extractor, |
| bool cache_value_check_timestamp, |
| uint32_t total_element_count_capacity, bool is_lru_k) |
| : ShardedLRUCache(name, capacity, type, num_shards, total_element_count_capacity, |
| is_lru_k) { |
| for (int s = 0; s < _num_shards; s++) { |
| _shards[s]->set_cache_value_time_extractor(cache_value_time_extractor); |
| _shards[s]->set_cache_value_check_timestamp(cache_value_check_timestamp); |
| } |
| } |
| |
| ShardedLRUCache::~ShardedLRUCache() { |
| _entity->deregister_hook(_name); |
| DorisMetrics::instance()->metric_registry()->deregister_entity(_entity); |
| if (_shards) { |
| for (int s = 0; s < _num_shards; s++) { |
| delete _shards[s]; |
| } |
| delete[] _shards; |
| } |
| } |
| |
| PrunedInfo ShardedLRUCache::set_capacity(size_t capacity) { |
| std::lock_guard l(_mutex); |
| PrunedInfo pruned_info; |
| const size_t per_shard = (capacity + (_num_shards - 1)) / _num_shards; |
| for (int s = 0; s < _num_shards; s++) { |
| PrunedInfo info = _shards[s]->set_capacity(per_shard); |
| pruned_info.pruned_count += info.pruned_count; |
| pruned_info.pruned_size += info.pruned_size; |
| } |
| _capacity = capacity; |
| return pruned_info; |
| } |
| |
| size_t ShardedLRUCache::get_capacity() { |
| std::lock_guard l(_mutex); |
| return _capacity; |
| } |
| |
| Cache::Handle* ShardedLRUCache::insert(const CacheKey& key, void* value, size_t charge, |
| CachePriority priority) { |
| const uint32_t hash = _hash_slice(key); |
| return _shards[_shard(hash)]->insert(key, hash, value, charge, priority); |
| } |
| |
| Cache::Handle* ShardedLRUCache::lookup(const CacheKey& key) { |
| const uint32_t hash = _hash_slice(key); |
| return _shards[_shard(hash)]->lookup(key, hash); |
| } |
| |
| void ShardedLRUCache::release(Handle* handle) { |
| auto* h = reinterpret_cast<LRUHandle*>(handle); |
| _shards[_shard(h->hash)]->release(handle); |
| } |
| |
| void ShardedLRUCache::erase(const CacheKey& key) { |
| const uint32_t hash = _hash_slice(key); |
| _shards[_shard(hash)]->erase(key, hash); |
| } |
| |
| void* ShardedLRUCache::value(Handle* handle) { |
| return reinterpret_cast<LRUHandle*>(handle)->value; |
| } |
| |
| uint64_t ShardedLRUCache::new_id() { |
| return _last_id.fetch_add(1, std::memory_order_relaxed); |
| } |
| |
| PrunedInfo ShardedLRUCache::prune() { |
| PrunedInfo pruned_info; |
| for (int s = 0; s < _num_shards; s++) { |
| PrunedInfo info = _shards[s]->prune(); |
| pruned_info.pruned_count += info.pruned_count; |
| pruned_info.pruned_size += info.pruned_size; |
| } |
| return pruned_info; |
| } |
| |
| PrunedInfo ShardedLRUCache::prune_if(CachePrunePredicate pred, bool lazy_mode) { |
| PrunedInfo pruned_info; |
| for (int s = 0; s < _num_shards; s++) { |
| PrunedInfo info = _shards[s]->prune_if(pred, lazy_mode); |
| pruned_info.pruned_count += info.pruned_count; |
| pruned_info.pruned_size += info.pruned_size; |
| } |
| return pruned_info; |
| } |
| |
| void ShardedLRUCache::for_each_entry(const std::function<void(const LRUHandle*)>& visitor) { |
| for (int s = 0; s < _num_shards; s++) { |
| _shards[s]->for_each_entry(visitor); |
| } |
| } |
| |
| int64_t ShardedLRUCache::get_usage() { |
| size_t total_usage = 0; |
| for (int i = 0; i < _num_shards; i++) { |
| total_usage += _shards[i]->get_usage(); |
| } |
| return total_usage; |
| } |
| |
| size_t ShardedLRUCache::get_element_count() { |
| size_t total_element_count = 0; |
| for (int i = 0; i < _num_shards; i++) { |
| total_element_count += _shards[i]->get_element_count(); |
| } |
| return total_element_count; |
| } |
| |
| void ShardedLRUCache::update_cache_metrics() const { |
| size_t capacity = 0; |
| size_t total_usage = 0; |
| size_t total_lookup_count = 0; |
| size_t total_hit_count = 0; |
| size_t total_element_count = 0; |
| size_t total_miss_count = 0; |
| size_t total_stampede_count = 0; |
| |
| for (int i = 0; i < _num_shards; i++) { |
| capacity += _shards[i]->get_capacity(); |
| total_usage += _shards[i]->get_usage(); |
| total_lookup_count += _shards[i]->get_lookup_count(); |
| total_hit_count += _shards[i]->get_hit_count(); |
| total_element_count += _shards[i]->get_element_count(); |
| total_miss_count += _shards[i]->get_miss_count(); |
| total_stampede_count += _shards[i]->get_stampede_count(); |
| } |
| |
| cache_capacity->set_value(capacity); |
| cache_usage->set_value(total_usage); |
| cache_element_count->set_value(total_element_count); |
| cache_lookup_count->set_value(total_lookup_count); |
| cache_hit_count->set_value(total_hit_count); |
| cache_miss_count->set_value(total_miss_count); |
| cache_stampede_count->set_value(total_stampede_count); |
| cache_usage_ratio->set_value( |
| capacity == 0 ? 0 : (static_cast<double>(total_usage) / static_cast<double>(capacity))); |
| cache_hit_ratio->set_value(total_lookup_count == 0 ? 0 |
| : (static_cast<double>(total_hit_count) / |
| static_cast<double>(total_lookup_count))); |
| } |
| |
| Cache::Handle* DummyLRUCache::insert(const CacheKey& key, void* value, size_t charge, |
| CachePriority priority) { |
| size_t handle_size = sizeof(LRUHandle); |
| auto* e = reinterpret_cast<LRUHandle*>(malloc(handle_size)); |
| e->value = value; |
| e->charge = charge; |
| e->key_length = 0; |
| e->total_size = 0; |
| e->hash = 0; |
| e->refs = 1; // only one for the returned handle |
| e->next = e->prev = nullptr; |
| e->in_cache = false; |
| return reinterpret_cast<Cache::Handle*>(e); |
| } |
| |
| void DummyLRUCache::release(Cache::Handle* handle) { |
| if (handle == nullptr) { |
| return; |
| } |
| auto* e = reinterpret_cast<LRUHandle*>(handle); |
| e->free(); |
| } |
| |
| void* DummyLRUCache::value(Handle* handle) { |
| return reinterpret_cast<LRUHandle*>(handle)->value; |
| } |
| |
| } // namespace doris |