| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| #include "olap/like_column_predicate.h" |
| |
| #include "runtime/define_primitive_type.h" |
| #include "udf/udf.h" |
| #include "vec/columns/predicate_column.h" |
| #include "vec/common/string_ref.h" |
| #include "vec/functions/like.h" |
| |
| namespace doris { |
| |
| template <PrimitiveType T> |
| LikeColumnPredicate<T>::LikeColumnPredicate(bool opposite, uint32_t column_id, |
| doris::FunctionContext* fn_ctx, doris::StringRef val) |
| : ColumnPredicate(column_id, opposite), pattern(val) { |
| static_assert(T == TYPE_VARCHAR || T == TYPE_CHAR || T == TYPE_STRING, |
| "LikeColumnPredicate only supports the following types: TYPE_VARCHAR, TYPE_CHAR, " |
| "TYPE_STRING"); |
| _state = reinterpret_cast<StateType*>( |
| fn_ctx->get_function_state(doris::FunctionContext::THREAD_LOCAL)); |
| THROW_IF_ERROR(_state->search_state.clone(_like_state)); |
| } |
| |
| template <PrimitiveType T> |
| void LikeColumnPredicate<T>::evaluate_vec(const vectorized::IColumn& column, uint16_t size, |
| bool* flags) const { |
| _evaluate_vec<false>(column, size, flags); |
| } |
| |
| template <PrimitiveType T> |
| void LikeColumnPredicate<T>::evaluate_and_vec(const vectorized::IColumn& column, uint16_t size, |
| bool* flags) const { |
| _evaluate_vec<true>(column, size, flags); |
| } |
| |
| template <PrimitiveType T> |
| uint16_t LikeColumnPredicate<T>::_evaluate_inner(const vectorized::IColumn& column, uint16_t* sel, |
| uint16_t size) const { |
| uint16_t new_size = 0; |
| if (column.is_nullable()) { |
| auto* nullable_col = vectorized::check_and_get_column<vectorized::ColumnNullable>(column); |
| auto& null_map_data = nullable_col->get_null_map_column().get_data(); |
| auto& nested_col = nullable_col->get_nested_column(); |
| if (nested_col.is_column_dictionary()) { |
| auto* nested_col_ptr = |
| vectorized::check_and_get_column<vectorized::ColumnDictI32>(nested_col); |
| auto& data_array = nested_col_ptr->get_data(); |
| const auto& dict_res = _find_code_from_dictionary_column(*nested_col_ptr); |
| if (!nullable_col->has_null()) { |
| for (uint16_t i = 0; i != size; i++) { |
| uint16_t idx = sel[i]; |
| sel[new_size] = idx; |
| unsigned char flag = dict_res[data_array[idx]]; |
| new_size += _opposite ^ flag; |
| } |
| } else { |
| for (uint16_t i = 0; i != size; i++) { |
| uint16_t idx = sel[i]; |
| sel[new_size] = idx; |
| if (null_map_data[idx]) { |
| new_size += _opposite; |
| continue; |
| } |
| unsigned char flag = dict_res[data_array[idx]]; |
| new_size += _opposite ^ flag; |
| } |
| } |
| } else { |
| auto* str_col = vectorized::check_and_get_column<vectorized::PredicateColumnType<T>>( |
| nested_col); |
| if (!nullable_col->has_null()) { |
| vectorized::ColumnUInt8::Container res(size, 0); |
| for (uint16_t i = 0; i != size; i++) { |
| uint16_t idx = sel[i]; |
| sel[new_size] = idx; |
| unsigned char flag = 0; |
| THROW_IF_ERROR((_state->scalar_function)( |
| &_like_state, str_col->get_data_at(idx), pattern, &flag)); |
| new_size += _opposite ^ flag; |
| } |
| } else { |
| for (uint16_t i = 0; i != size; i++) { |
| uint16_t idx = sel[i]; |
| sel[new_size] = idx; |
| if (null_map_data[idx]) { |
| new_size += _opposite; |
| continue; |
| } |
| |
| StringRef cell_value = str_col->get_data_at(idx); |
| unsigned char flag = 0; |
| THROW_IF_ERROR((_state->scalar_function)( |
| &_like_state, StringRef(cell_value.data, cell_value.size), pattern, |
| &flag)); |
| new_size += _opposite ^ flag; |
| } |
| } |
| } |
| } else { |
| if (column.is_column_dictionary()) { |
| auto* nested_col_ptr = |
| vectorized::check_and_get_column<vectorized::ColumnDictI32>(column); |
| const auto& dict_res = _find_code_from_dictionary_column(*nested_col_ptr); |
| auto& data_array = nested_col_ptr->get_data(); |
| for (uint16_t i = 0; i != size; i++) { |
| uint16_t idx = sel[i]; |
| sel[new_size] = idx; |
| unsigned char flag = dict_res[data_array[idx]]; |
| new_size += _opposite ^ flag; |
| } |
| } else { |
| const vectorized::PredicateColumnType<T>* str_col = |
| vectorized::check_and_get_column<vectorized::PredicateColumnType<T>>(column); |
| |
| vectorized::ColumnUInt8::Container res(size, 0); |
| for (uint16_t i = 0; i != size; i++) { |
| uint16_t idx = sel[i]; |
| sel[new_size] = idx; |
| unsigned char flag = 0; |
| THROW_IF_ERROR((_state->scalar_function)(&_like_state, str_col->get_data_at(idx), |
| pattern, &flag)); |
| new_size += _opposite ^ flag; |
| } |
| } |
| } |
| return new_size; |
| } |
| |
| template class LikeColumnPredicate<TYPE_CHAR>; |
| template class LikeColumnPredicate<TYPE_STRING>; |
| |
| } //namespace doris |