| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| #include "vec/exprs/vexpr.h" |
| |
| #include <fmt/format.h> |
| #include <gen_cpp/Exprs_types.h> |
| #include <gen_cpp/FrontendService_types.h> |
| #include <thrift/protocol/TDebugProtocol.h> |
| |
| #include <algorithm> |
| #include <boost/algorithm/string/split.hpp> |
| #include <boost/iterator/iterator_facade.hpp> |
| #include <cstdint> |
| #include <memory> |
| #include <stack> |
| #include <string_view> |
| #include <utility> |
| |
| #include "common/config.h" |
| #include "common/exception.h" |
| #include "common/status.h" |
| #include "olap/inverted_index_parser.h" |
| #include "olap/rowset/segment_v2/ann_index/ann_search_params.h" |
| #include "olap/rowset/segment_v2/ann_index/ann_topn_runtime.h" |
| #include "olap/rowset/segment_v2/column_reader.h" |
| #include "pipeline/pipeline_task.h" |
| #include "runtime/define_primitive_type.h" |
| #include "vec/columns/column_vector.h" |
| #include "vec/core/field.h" |
| #include "vec/data_types/data_type_array.h" |
| #include "vec/data_types/data_type_decimal.h" |
| #include "vec/data_types/data_type_factory.hpp" |
| #include "vec/data_types/data_type_nullable.h" |
| #include "vec/data_types/data_type_number.h" |
| #include "vec/exprs/varray_literal.h" |
| #include "vec/exprs/vcase_expr.h" |
| #include "vec/exprs/vcast_expr.h" |
| #include "vec/exprs/vcolumn_ref.h" |
| #include "vec/exprs/vcompound_pred.h" |
| #include "vec/exprs/vcondition_expr.h" |
| #include "vec/exprs/vectorized_fn_call.h" |
| #include "vec/exprs/vexpr_context.h" |
| #include "vec/exprs/vexpr_fwd.h" |
| #include "vec/exprs/vin_predicate.h" |
| #include "vec/exprs/vinfo_func.h" |
| #include "vec/exprs/virtual_slot_ref.h" |
| #include "vec/exprs/vlambda_function_call_expr.h" |
| #include "vec/exprs/vlambda_function_expr.h" |
| #include "vec/exprs/vliteral.h" |
| #include "vec/exprs/vmap_literal.h" |
| #include "vec/exprs/vmatch_predicate.h" |
| #include "vec/exprs/vsearch.h" |
| #include "vec/exprs/vslot_ref.h" |
| #include "vec/exprs/vstruct_literal.h" |
| #include "vec/runtime/timestamptz_value.h" |
| #include "vec/utils/util.hpp" |
| |
| namespace doris { |
| #include "common/compile_check_begin.h" |
| |
| class RowDescriptor; |
| class RuntimeState; |
| |
| // NOLINTBEGIN(readability-function-cognitive-complexity) |
| // NOLINTBEGIN(readability-function-size) |
| TExprNode create_texpr_node_from(const void* data, const PrimitiveType& type, int precision, |
| int scale) { |
| TExprNode node; |
| |
| switch (type) { |
| case TYPE_BOOLEAN: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_BOOLEAN>(data, &node)); |
| break; |
| } |
| case TYPE_TINYINT: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_TINYINT>(data, &node)); |
| break; |
| } |
| case TYPE_SMALLINT: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_SMALLINT>(data, &node)); |
| break; |
| } |
| case TYPE_INT: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_INT>(data, &node)); |
| break; |
| } |
| case TYPE_BIGINT: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_BIGINT>(data, &node)); |
| break; |
| } |
| case TYPE_LARGEINT: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_LARGEINT>(data, &node)); |
| break; |
| } |
| case TYPE_FLOAT: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_FLOAT>(data, &node)); |
| break; |
| } |
| case TYPE_DOUBLE: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DOUBLE>(data, &node)); |
| break; |
| } |
| case TYPE_DATEV2: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATEV2>(data, &node)); |
| break; |
| } |
| case TYPE_DATETIMEV2: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATETIMEV2>(data, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DATE: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATE>(data, &node)); |
| break; |
| } |
| case TYPE_DATETIME: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATETIME>(data, &node)); |
| break; |
| } |
| case TYPE_DECIMALV2: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMALV2>(data, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DECIMAL32: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMAL32>(data, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DECIMAL64: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMAL64>(data, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DECIMAL128I: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMAL128I>(data, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DECIMAL256: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DECIMAL256>(data, &node, precision, scale)); |
| break; |
| } |
| case TYPE_CHAR: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_CHAR>(data, &node)); |
| break; |
| } |
| case TYPE_VARCHAR: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_VARCHAR>(data, &node)); |
| break; |
| } |
| case TYPE_STRING: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_STRING>(data, &node)); |
| break; |
| } |
| case TYPE_IPV4: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_IPV4>(data, &node)); |
| break; |
| } |
| case TYPE_IPV6: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_IPV6>(data, &node)); |
| break; |
| } |
| case TYPE_TIMEV2: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_TIMEV2>(data, &node, precision, scale)); |
| break; |
| } |
| case TYPE_TIMESTAMPTZ: { |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_TIMESTAMPTZ>(data, &node, precision, scale)); |
| break; |
| } |
| default: |
| throw Exception(ErrorCode::INTERNAL_ERROR, "runtime filter meet invalid type {}", |
| int(type)); |
| } |
| return node; |
| } |
| |
| TExprNode create_texpr_node_from(const vectorized::Field& field, const PrimitiveType& type, |
| int precision, int scale) { |
| TExprNode node; |
| switch (type) { |
| case TYPE_BOOLEAN: { |
| const auto& storage = static_cast<bool>( |
| field.get<typename PrimitiveTypeTraits<TYPE_BOOLEAN>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_BOOLEAN>(&storage, &node)); |
| break; |
| } |
| case TYPE_TINYINT: { |
| const auto& storage = static_cast<int8_t>( |
| field.get<typename PrimitiveTypeTraits<TYPE_TINYINT>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_TINYINT>(&storage, &node)); |
| break; |
| } |
| case TYPE_SMALLINT: { |
| const auto& storage = static_cast<int16_t>( |
| field.get<typename PrimitiveTypeTraits<TYPE_SMALLINT>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_SMALLINT>(&storage, &node)); |
| break; |
| } |
| case TYPE_INT: { |
| const auto& storage = static_cast<int32_t>( |
| field.get<typename PrimitiveTypeTraits<TYPE_INT>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_INT>(&storage, &node)); |
| break; |
| } |
| case TYPE_BIGINT: { |
| const auto& storage = static_cast<int64_t>( |
| field.get<typename PrimitiveTypeTraits<TYPE_BIGINT>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_BIGINT>(&storage, &node)); |
| break; |
| } |
| case TYPE_LARGEINT: { |
| const auto& storage = static_cast<int128_t>( |
| field.get<typename PrimitiveTypeTraits<TYPE_LARGEINT>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_LARGEINT>(&storage, &node)); |
| break; |
| } |
| case TYPE_FLOAT: { |
| const auto& storage = static_cast<float>( |
| field.get<typename PrimitiveTypeTraits<TYPE_FLOAT>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_FLOAT>(&storage, &node)); |
| break; |
| } |
| case TYPE_DOUBLE: { |
| const auto& storage = static_cast<double>( |
| field.get<typename PrimitiveTypeTraits<TYPE_DOUBLE>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DOUBLE>(&storage, &node)); |
| break; |
| } |
| case TYPE_DATEV2: { |
| DateV2Value<DateV2ValueType> storage = |
| binary_cast<uint32_t, DateV2Value<DateV2ValueType>>(static_cast<uint32_t>( |
| field.get<typename PrimitiveTypeTraits<TYPE_DATEV2>::NearestFieldType>())); |
| |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATEV2>(&storage, &node)); |
| break; |
| } |
| case TYPE_DATETIMEV2: { |
| DateV2Value<DateTimeV2ValueType> storage = binary_cast<uint64_t, |
| DateV2Value<DateTimeV2ValueType>>( |
| field.get<typename PrimitiveTypeTraits<TYPE_DATETIMEV2>::NearestFieldType>()); |
| |
| THROW_IF_ERROR( |
| create_texpr_literal_node<TYPE_DATETIMEV2>(&storage, &node, precision, scale)); |
| break; |
| } |
| case TYPE_TIMESTAMPTZ: { |
| TimestampTzValue storage = binary_cast<uint64_t, TimestampTzValue>( |
| field.get<typename PrimitiveTypeTraits<TYPE_TIMESTAMPTZ>::NearestFieldType>()); |
| |
| THROW_IF_ERROR( |
| create_texpr_literal_node<TYPE_TIMESTAMPTZ>(&storage, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DATE: { |
| VecDateTimeValue storage = binary_cast<int64_t, doris::VecDateTimeValue>( |
| field.get<typename PrimitiveTypeTraits<TYPE_DATE>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATE>(&storage, &node)); |
| break; |
| } |
| case TYPE_DATETIME: { |
| VecDateTimeValue storage = binary_cast<int64_t, doris::VecDateTimeValue>( |
| field.get<typename PrimitiveTypeTraits<TYPE_DATETIME>::NearestFieldType>()); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_DATETIME>(&storage, &node)); |
| break; |
| } |
| case TYPE_DECIMALV2: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_DECIMALV2>::NearestFieldType>() |
| .get_value(); |
| |
| THROW_IF_ERROR( |
| create_texpr_literal_node<TYPE_DECIMALV2>(&storage, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DECIMAL32: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_DECIMAL32>::NearestFieldType>() |
| .get_value(); |
| THROW_IF_ERROR( |
| create_texpr_literal_node<TYPE_DECIMAL32>(&storage, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DECIMAL64: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_DECIMAL64>::NearestFieldType>() |
| .get_value(); |
| THROW_IF_ERROR( |
| create_texpr_literal_node<TYPE_DECIMAL64>(&storage, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DECIMAL128I: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_DECIMAL128I>::NearestFieldType>() |
| .get_value(); |
| THROW_IF_ERROR( |
| create_texpr_literal_node<TYPE_DECIMAL128I>(&storage, &node, precision, scale)); |
| break; |
| } |
| case TYPE_DECIMAL256: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_DECIMAL256>::NearestFieldType>() |
| .get_value(); |
| THROW_IF_ERROR( |
| create_texpr_literal_node<TYPE_DECIMAL256>(&storage, &node, precision, scale)); |
| break; |
| } |
| case TYPE_CHAR: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_CHAR>::NearestFieldType>(); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_CHAR>(&storage, &node)); |
| break; |
| } |
| case TYPE_VARCHAR: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_VARCHAR>::NearestFieldType>(); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_VARCHAR>(&storage, &node)); |
| break; |
| } |
| case TYPE_STRING: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_STRING>::NearestFieldType>(); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_STRING>(&storage, &node)); |
| break; |
| } |
| case TYPE_IPV4: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_IPV4>::NearestFieldType>(); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_IPV4>(&storage, &node)); |
| break; |
| } |
| case TYPE_IPV6: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_IPV6>::NearestFieldType>(); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_IPV6>(&storage, &node)); |
| break; |
| } |
| case TYPE_TIMEV2: { |
| const auto& storage = |
| field.get<typename PrimitiveTypeTraits<TYPE_TIMEV2>::NearestFieldType>(); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_TIMEV2>(&storage, &node)); |
| break; |
| } |
| case TYPE_VARBINARY: { |
| const auto& svf = field.get<vectorized::StringViewField>(); |
| const std::string& storage = svf.get_string(); |
| THROW_IF_ERROR(create_texpr_literal_node<TYPE_VARBINARY>(&storage, &node)); |
| break; |
| } |
| default: |
| throw Exception(ErrorCode::INTERNAL_ERROR, "runtime filter meet invalid type {}", |
| int(type)); |
| } |
| return node; |
| } |
| |
| // NOLINTEND(readability-function-size) |
| // NOLINTEND(readability-function-cognitive-complexity) |
| } // namespace doris |
| |
| namespace doris::vectorized { |
| |
| bool VExpr::is_acting_on_a_slot(const VExpr& expr) { |
| const auto& children = expr.children(); |
| |
| auto is_a_slot = std::any_of(children.begin(), children.end(), |
| [](const auto& child) { return is_acting_on_a_slot(*child); }); |
| |
| return is_a_slot ? true |
| : (expr.node_type() == TExprNodeType::SLOT_REF || |
| expr.node_type() == TExprNodeType::VIRTUAL_SLOT_REF); |
| } |
| |
| VExpr::VExpr(const TExprNode& node) |
| : _node_type(node.node_type), |
| _opcode(node.__isset.opcode ? node.opcode : TExprOpcode::INVALID_OPCODE) { |
| if (node.__isset.fn) { |
| _fn = node.fn; |
| } |
| |
| bool is_nullable = true; |
| if (node.__isset.is_nullable) { |
| is_nullable = node.is_nullable; |
| } |
| // If we define null literal ,should make nullable data type to get correct field instead of undefined ptr |
| if (node.node_type == TExprNodeType::NULL_LITERAL) { |
| CHECK(is_nullable); |
| } |
| _data_type = get_data_type_with_default_argument( |
| DataTypeFactory::instance().create_data_type(node.type, is_nullable)); |
| } |
| |
| VExpr::VExpr(const VExpr& vexpr) = default; |
| |
| VExpr::VExpr(DataTypePtr type, bool is_slotref) |
| : _opcode(TExprOpcode::INVALID_OPCODE), |
| _data_type(get_data_type_with_default_argument(type)) { |
| if (is_slotref) { |
| _node_type = TExprNodeType::SLOT_REF; |
| } |
| } |
| |
| Status VExpr::prepare(RuntimeState* state, const RowDescriptor& row_desc, VExprContext* context) { |
| ++context->_depth_num; |
| if (context->_depth_num > config::max_depth_of_expr_tree) { |
| return Status::Error<ErrorCode::EXCEEDED_LIMIT>( |
| "The depth of the expression tree is too big, make it less than {}", |
| config::max_depth_of_expr_tree); |
| } |
| |
| for (auto& i : _children) { |
| RETURN_IF_ERROR(i->prepare(state, row_desc, context)); |
| } |
| --context->_depth_num; |
| #ifndef BE_TEST |
| _enable_inverted_index_query = state->query_options().enable_inverted_index_query; |
| #endif |
| return Status::OK(); |
| } |
| |
| Status VExpr::open(RuntimeState* state, VExprContext* context, |
| FunctionContext::FunctionStateScope scope) { |
| for (auto& i : _children) { |
| RETURN_IF_ERROR(i->open(state, context, scope)); |
| } |
| if (scope == FunctionContext::FRAGMENT_LOCAL) { |
| RETURN_IF_ERROR(VExpr::get_const_col(context, nullptr)); |
| } |
| return Status::OK(); |
| } |
| |
| void VExpr::close(VExprContext* context, FunctionContext::FunctionStateScope scope) { |
| for (auto& i : _children) { |
| i->close(context, scope); |
| } |
| } |
| |
| // NOLINTBEGIN(readability-function-size) |
| Status VExpr::create_expr(const TExprNode& expr_node, VExprSPtr& expr) { |
| try { |
| switch (expr_node.node_type) { |
| case TExprNodeType::BOOL_LITERAL: |
| case TExprNodeType::INT_LITERAL: |
| case TExprNodeType::LARGE_INT_LITERAL: |
| case TExprNodeType::IPV4_LITERAL: |
| case TExprNodeType::IPV6_LITERAL: |
| case TExprNodeType::FLOAT_LITERAL: |
| case TExprNodeType::DECIMAL_LITERAL: |
| case TExprNodeType::DATE_LITERAL: |
| case TExprNodeType::TIMEV2_LITERAL: |
| case TExprNodeType::STRING_LITERAL: |
| case TExprNodeType::JSON_LITERAL: |
| case TExprNodeType::VARBINARY_LITERAL: |
| case TExprNodeType::NULL_LITERAL: { |
| expr = VLiteral::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::ARRAY_LITERAL: { |
| expr = VArrayLiteral::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::MAP_LITERAL: { |
| expr = VMapLiteral::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::STRUCT_LITERAL: { |
| expr = VStructLiteral::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::SLOT_REF: { |
| if (expr_node.slot_ref.__isset.is_virtual_slot && expr_node.slot_ref.is_virtual_slot) { |
| expr = VirtualSlotRef::create_shared(expr_node); |
| expr->_node_type = TExprNodeType::VIRTUAL_SLOT_REF; |
| } else { |
| expr = VSlotRef::create_shared(expr_node); |
| } |
| break; |
| } |
| case TExprNodeType::COLUMN_REF: { |
| expr = VColumnRef::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::COMPOUND_PRED: { |
| expr = VCompoundPred::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::LAMBDA_FUNCTION_EXPR: { |
| expr = VLambdaFunctionExpr::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::LAMBDA_FUNCTION_CALL_EXPR: { |
| expr = VLambdaFunctionCallExpr::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::ARITHMETIC_EXPR: |
| case TExprNodeType::BINARY_PRED: |
| case TExprNodeType::NULL_AWARE_BINARY_PRED: |
| case TExprNodeType::COMPUTE_FUNCTION_CALL: { |
| expr = VectorizedFnCall::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::FUNCTION_CALL: { |
| if (expr_node.fn.name.function_name == "if") { |
| expr = VectorizedIfExpr::create_shared(expr_node); |
| break; |
| } else if (expr_node.fn.name.function_name == "ifnull" || |
| expr_node.fn.name.function_name == "nvl") { |
| expr = VectorizedIfNullExpr::create_shared(expr_node); |
| break; |
| } else if (expr_node.fn.name.function_name == "coalesce") { |
| expr = VectorizedCoalesceExpr::create_shared(expr_node); |
| break; |
| } |
| expr = VectorizedFnCall::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::MATCH_PRED: { |
| expr = VMatchPredicate::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::CAST_EXPR: { |
| expr = VCastExpr::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::TRY_CAST_EXPR: { |
| expr = TryCastExpr::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::IN_PRED: { |
| expr = VInPredicate::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::CASE_EXPR: { |
| if (!expr_node.__isset.case_expr) { |
| return Status::InternalError("Case expression not set in thrift node"); |
| } |
| expr = VCaseExpr::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::INFO_FUNC: { |
| expr = VInfoFunc::create_shared(expr_node); |
| break; |
| } |
| case TExprNodeType::SEARCH_EXPR: { |
| expr = VSearchExpr::create_shared(expr_node); |
| break; |
| } |
| default: |
| return Status::InternalError("Unknown expr node type: {}", expr_node.node_type); |
| } |
| } catch (const Exception& e) { |
| if (e.code() == ErrorCode::INTERNAL_ERROR) { |
| return Status::InternalError("Create Expr failed because {}\nTExprNode={}", e.what(), |
| apache::thrift::ThriftDebugString(expr_node)); |
| } |
| return Status::Error<false>(e.code(), "Create Expr failed because {}", e.what()); |
| LOG(WARNING) << "create expr failed, TExprNode={}, reason={}" |
| << apache::thrift::ThriftDebugString(expr_node) << e.what(); |
| } |
| if (!expr->data_type()) { |
| return Status::InvalidArgument("Unknown expr type: {}", expr_node.node_type); |
| } |
| return Status::OK(); |
| } |
| // NOLINTEND(readability-function-size) |
| |
| Status VExpr::create_tree_from_thrift(const std::vector<TExprNode>& nodes, int* node_idx, |
| VExprSPtr& root_expr, VExprContextSPtr& ctx) { |
| // propagate error case |
| if (*node_idx >= nodes.size()) { |
| return Status::InternalError("Failed to reconstruct expression tree from thrift."); |
| } |
| |
| // create root expr |
| int root_children = nodes[*node_idx].num_children; |
| VExprSPtr root; |
| RETURN_IF_ERROR(create_expr(nodes[*node_idx], root)); |
| DCHECK(root != nullptr); |
| root_expr = root; |
| ctx = std::make_shared<VExprContext>(root); |
| // short path for leaf node |
| if (root_children <= 0) { |
| return Status::OK(); |
| } |
| |
| // non-recursive traversal |
| using VExprSPtrCountPair = std::pair<VExprSPtr, int>; |
| std::stack<std::shared_ptr<VExprSPtrCountPair>> s; |
| s.emplace(std::make_shared<VExprSPtrCountPair>(root, root_children)); |
| while (!s.empty()) { |
| // copy the shared ptr resource to avoid dangling reference |
| auto parent = s.top(); |
| // Decrement or pop |
| if (parent->second > 1) { |
| parent->second -= 1; |
| } else { |
| s.pop(); |
| } |
| |
| DCHECK(parent->first != nullptr); |
| if (++*node_idx >= nodes.size()) { |
| return Status::InternalError("Failed to reconstruct expression tree from thrift."); |
| } |
| |
| VExprSPtr expr; |
| RETURN_IF_ERROR(create_expr(nodes[*node_idx], expr)); |
| DCHECK(expr != nullptr); |
| parent->first->add_child(expr); |
| // push to stack if has children |
| int num_children = nodes[*node_idx].num_children; |
| if (num_children > 0) { |
| s.emplace(std::make_shared<VExprSPtrCountPair>(expr, num_children)); |
| } |
| } |
| return Status::OK(); |
| } |
| |
| Status VExpr::create_expr_tree(const TExpr& texpr, VExprContextSPtr& ctx) { |
| if (texpr.nodes.empty()) { |
| ctx = nullptr; |
| return Status::OK(); |
| } |
| int node_idx = 0; |
| VExprSPtr e; |
| Status status = create_tree_from_thrift(texpr.nodes, &node_idx, e, ctx); |
| if (status.ok() && node_idx + 1 != texpr.nodes.size()) { |
| status = Status::InternalError( |
| "Expression tree only partially reconstructed. Not all thrift nodes were " |
| "used."); |
| } |
| if (!status.ok()) { |
| LOG(ERROR) << "Could not construct expr tree.\n" |
| << status << "\n" |
| << apache::thrift::ThriftDebugString(texpr); |
| } |
| return status; |
| } |
| |
| Status VExpr::create_expr_trees(const std::vector<TExpr>& texprs, VExprContextSPtrs& ctxs) { |
| ctxs.clear(); |
| for (const auto& texpr : texprs) { |
| VExprContextSPtr ctx; |
| RETURN_IF_ERROR(create_expr_tree(texpr, ctx)); |
| ctxs.push_back(ctx); |
| } |
| return Status::OK(); |
| } |
| |
| Status VExpr::check_expr_output_type(const VExprContextSPtrs& ctxs, |
| const RowDescriptor& output_row_desc) { |
| if (ctxs.empty()) { |
| return Status::OK(); |
| } |
| auto name_and_types = VectorizedUtils::create_name_and_data_types(output_row_desc); |
| if (ctxs.size() != name_and_types.size()) { |
| return Status::InternalError( |
| "output type size not match expr size {} , expected output size {} ", ctxs.size(), |
| name_and_types.size()); |
| } |
| auto check_type_can_be_converted = [](DataTypePtr& from, DataTypePtr& to) -> bool { |
| if (to->equals(*from)) { |
| return true; |
| } |
| if (to->is_nullable() && !from->is_nullable()) { |
| return remove_nullable(to)->equals(*from); |
| } |
| return false; |
| }; |
| for (int i = 0; i < ctxs.size(); i++) { |
| auto real_expr_type = get_data_type_with_default_argument(ctxs[i]->root()->data_type()); |
| auto&& [name, expected_type] = name_and_types[i]; |
| if (!check_type_can_be_converted(real_expr_type, expected_type)) { |
| return Status::InternalError( |
| "output type not match expr type, col name {} , expected type {} , real type " |
| "{}", |
| name, expected_type->get_name(), real_expr_type->get_name()); |
| } |
| } |
| return Status::OK(); |
| } |
| |
| Status VExpr::prepare(const VExprContextSPtrs& ctxs, RuntimeState* state, |
| const RowDescriptor& row_desc) { |
| for (auto ctx : ctxs) { |
| RETURN_IF_ERROR(ctx->prepare(state, row_desc)); |
| } |
| return Status::OK(); |
| } |
| |
| Status VExpr::open(const VExprContextSPtrs& ctxs, RuntimeState* state) { |
| for (const auto& ctx : ctxs) { |
| RETURN_IF_ERROR(ctx->open(state)); |
| } |
| return Status::OK(); |
| } |
| |
| Status VExpr::clone_if_not_exists(const VExprContextSPtrs& ctxs, RuntimeState* state, |
| VExprContextSPtrs& new_ctxs) { |
| if (!new_ctxs.empty()) { |
| // 'ctxs' was already cloned into '*new_ctxs', nothing to do. |
| DCHECK_EQ(new_ctxs.size(), ctxs.size()); |
| for (auto& new_ctx : new_ctxs) { |
| DCHECK(new_ctx->_is_clone); |
| } |
| return Status::OK(); |
| } |
| new_ctxs.resize(ctxs.size()); |
| for (int i = 0; i < ctxs.size(); ++i) { |
| RETURN_IF_ERROR(ctxs[i]->clone(state, new_ctxs[i])); |
| } |
| return Status::OK(); |
| } |
| |
| std::string VExpr::debug_string() const { |
| // TODO: implement partial debug string for member vars |
| std::stringstream out; |
| out << " type=" << _data_type->get_name(); |
| |
| if (!_children.empty()) { |
| out << " children=" << debug_string(_children); |
| } |
| |
| return out.str(); |
| } |
| |
| std::string VExpr::debug_string(const VExprSPtrs& exprs) { |
| std::stringstream out; |
| out << "["; |
| |
| for (int i = 0; i < exprs.size(); ++i) { |
| out << (i == 0 ? "" : " ") << exprs[i]->debug_string(); |
| } |
| |
| out << "]"; |
| return out.str(); |
| } |
| |
| std::string VExpr::debug_string(const VExprContextSPtrs& ctxs) { |
| VExprSPtrs exprs; |
| for (const auto& ctx : ctxs) { |
| exprs.push_back(ctx->root()); |
| } |
| return debug_string(exprs); |
| } |
| |
| bool VExpr::is_constant() const { |
| return std::all_of(_children.begin(), _children.end(), |
| [](const VExprSPtr& expr) { return expr->is_constant(); }); |
| } |
| |
| Status VExpr::get_const_col(VExprContext* context, |
| std::shared_ptr<ColumnPtrWrapper>* column_wrapper) { |
| if (!is_constant()) { |
| return Status::OK(); |
| } |
| |
| if (_constant_col != nullptr) { |
| DCHECK(column_wrapper != nullptr); |
| *column_wrapper = _constant_col; |
| return Status::OK(); |
| } |
| |
| ColumnPtr result; |
| RETURN_IF_ERROR(execute_column(context, nullptr, 1, result)); |
| _constant_col = std::make_shared<ColumnPtrWrapper>(result); |
| if (column_wrapper != nullptr) { |
| *column_wrapper = _constant_col; |
| } |
| |
| return Status::OK(); |
| } |
| |
| void VExpr::register_function_context(RuntimeState* state, VExprContext* context) { |
| std::vector<DataTypePtr> arg_types; |
| for (auto& i : _children) { |
| arg_types.push_back(i->data_type()); |
| } |
| |
| _fn_context_index = context->register_function_context(state, _data_type, arg_types); |
| } |
| |
| Status VExpr::init_function_context(RuntimeState* state, VExprContext* context, |
| FunctionContext::FunctionStateScope scope, |
| const FunctionBasePtr& function) const { |
| FunctionContext* fn_ctx = context->fn_context(_fn_context_index); |
| if (scope == FunctionContext::FRAGMENT_LOCAL) { |
| std::vector<std::shared_ptr<ColumnPtrWrapper>> constant_cols; |
| for (auto c : _children) { |
| std::shared_ptr<ColumnPtrWrapper> const_col; |
| RETURN_IF_ERROR(c->get_const_col(context, &const_col)); |
| constant_cols.push_back(const_col); |
| } |
| fn_ctx->set_constant_cols(constant_cols); |
| } |
| |
| if (scope == FunctionContext::FRAGMENT_LOCAL) { |
| RETURN_IF_ERROR(function->open(fn_ctx, FunctionContext::FRAGMENT_LOCAL)); |
| } |
| RETURN_IF_ERROR(function->open(fn_ctx, FunctionContext::THREAD_LOCAL)); |
| return Status::OK(); |
| } |
| |
| void VExpr::close_function_context(VExprContext* context, FunctionContext::FunctionStateScope scope, |
| const FunctionBasePtr& function) const { |
| if (_fn_context_index != -1) { |
| FunctionContext* fn_ctx = context->fn_context(_fn_context_index); |
| // `close_function_context` is called in VExprContext's destructor so do not throw exceptions here. |
| static_cast<void>(function->close(fn_ctx, FunctionContext::THREAD_LOCAL)); |
| if (scope == FunctionContext::FRAGMENT_LOCAL) { |
| static_cast<void>(function->close(fn_ctx, FunctionContext::FRAGMENT_LOCAL)); |
| } |
| } |
| } |
| |
| Status VExpr::check_constant(const Block& block, ColumnNumbers arguments) const { |
| if (is_constant() && !VectorizedUtils::all_arguments_are_constant(block, arguments)) { |
| return Status::InternalError("const check failed, expr={}", debug_string()); |
| } |
| return Status::OK(); |
| } |
| |
| uint64_t VExpr::get_digest(uint64_t seed) const { |
| auto digest = seed; |
| for (auto child : _children) { |
| digest = child->get_digest(digest); |
| if (digest == 0) { |
| return 0; |
| } |
| } |
| |
| auto& fn_name = _fn.name.function_name; |
| if (!fn_name.empty()) { |
| digest = HashUtil::hash64(fn_name.c_str(), fn_name.size(), digest); |
| } else { |
| digest = HashUtil::hash64((const char*)&_node_type, sizeof(_node_type), digest); |
| digest = HashUtil::hash64((const char*)&_opcode, sizeof(_opcode), digest); |
| } |
| return digest; |
| } |
| |
| ColumnPtr VExpr::get_result_from_const(size_t count) const { |
| return ColumnConst::create(_constant_col->column_ptr, count); |
| } |
| |
| Status VExpr::_evaluate_inverted_index(VExprContext* context, const FunctionBasePtr& function, |
| uint32_t segment_num_rows) { |
| // Pre-allocate vectors based on an estimated or known size |
| std::vector<segment_v2::IndexIterator*> iterators; |
| std::vector<vectorized::IndexFieldNameAndTypePair> data_type_with_names; |
| std::vector<int> column_ids; |
| vectorized::ColumnsWithTypeAndName arguments; |
| VExprSPtrs children_exprs; |
| |
| // Reserve space to avoid multiple reallocations |
| const size_t estimated_size = get_num_children(); |
| iterators.reserve(estimated_size); |
| data_type_with_names.reserve(estimated_size); |
| column_ids.reserve(estimated_size); |
| children_exprs.reserve(estimated_size); |
| |
| auto index_context = context->get_index_context(); |
| |
| // if child is cast expr, we need to ensure target data type is the same with storage data type. |
| // or they are all string type |
| // and if data type is array, we need to get the nested data type to ensure that. |
| for (const auto& child : children()) { |
| if (child->node_type() == TExprNodeType::CAST_EXPR) { |
| auto* cast_expr = assert_cast<VCastExpr*>(child.get()); |
| DCHECK_EQ(cast_expr->get_num_children(), 1); |
| if (cast_expr->get_child(0)->is_slot_ref()) { |
| auto* column_slot_ref = assert_cast<VSlotRef*>(cast_expr->get_child(0).get()); |
| auto column_id = column_slot_ref->column_id(); |
| const auto* storage_name_type = |
| context->get_index_context()->get_storage_name_and_type_by_column_id( |
| column_id); |
| auto storage_type = remove_nullable(storage_name_type->second); |
| auto target_type = remove_nullable(cast_expr->get_target_type()); |
| auto origin_primitive_type = storage_type->get_primitive_type(); |
| auto target_primitive_type = target_type->get_primitive_type(); |
| if (is_complex_type(storage_type->get_primitive_type())) { |
| if (storage_type->get_primitive_type() == TYPE_ARRAY && |
| target_type->get_primitive_type() == TYPE_ARRAY) { |
| auto nested_storage_type = |
| (assert_cast<const DataTypeArray*>(storage_type.get())) |
| ->get_nested_type(); |
| origin_primitive_type = nested_storage_type->get_primitive_type(); |
| auto nested_target_type = |
| (assert_cast<const DataTypeArray*>(target_type.get())) |
| ->get_nested_type(); |
| target_primitive_type = nested_target_type->get_primitive_type(); |
| } else { |
| continue; |
| } |
| } |
| if (origin_primitive_type != TYPE_VARIANT && |
| (storage_type->equals(*target_type) || |
| (is_string_type(target_primitive_type) && |
| is_string_type(origin_primitive_type)))) { |
| children_exprs.emplace_back(expr_without_cast(child)); |
| } |
| } else { |
| return Status::OK(); // for example: cast("abc") as ipv4 case |
| } |
| } else { |
| children_exprs.emplace_back(child); |
| } |
| } |
| |
| if (children_exprs.empty()) { |
| return Status::OK(); // Early exit if no children to process |
| } |
| |
| for (const auto& child : children_exprs) { |
| if (child->is_slot_ref()) { |
| auto* column_slot_ref = assert_cast<VSlotRef*>(child.get()); |
| auto column_id = column_slot_ref->column_id(); |
| auto* iter = context->get_index_context()->get_inverted_index_iterator_by_column_id( |
| column_id); |
| //column does not have inverted index |
| if (iter == nullptr) { |
| continue; |
| } |
| const auto* storage_name_type = |
| context->get_index_context()->get_storage_name_and_type_by_column_id(column_id); |
| if (storage_name_type == nullptr) { |
| auto err_msg = fmt::format( |
| "storage_name_type cannot be found for column {} while in {} " |
| "evaluate_inverted_index", |
| column_id, expr_name()); |
| LOG(ERROR) << err_msg; |
| return Status::InternalError(err_msg); |
| } |
| iterators.emplace_back(iter); |
| data_type_with_names.emplace_back(*storage_name_type); |
| column_ids.emplace_back(column_id); |
| } else if (child->is_literal()) { |
| auto* column_literal = assert_cast<VLiteral*>(child.get()); |
| arguments.emplace_back(column_literal->get_column_ptr(), |
| column_literal->get_data_type(), column_literal->expr_name()); |
| } else if (child->can_push_down_to_index()) { |
| RETURN_IF_ERROR(child->evaluate_inverted_index(context, segment_num_rows)); |
| } else { |
| return Status::OK(); // others cases |
| } |
| } |
| |
| // is null or is not null has no arguments |
| if (iterators.empty() || (arguments.empty() && !(function->get_name() == "is_not_null_pred" || |
| function->get_name() == "is_null_pred"))) { |
| return Status::OK(); // Nothing to evaluate or no literals to compare against |
| } |
| |
| const InvertedIndexAnalyzerCtx* analyzer_ctx = nullptr; |
| if (auto index_ctx = context->get_index_context(); index_ctx != nullptr) { |
| analyzer_ctx = index_ctx->get_analyzer_ctx_for_expr(this); |
| } |
| |
| auto result_bitmap = segment_v2::InvertedIndexResultBitmap(); |
| auto res = function->evaluate_inverted_index(arguments, data_type_with_names, iterators, |
| segment_num_rows, analyzer_ctx, result_bitmap); |
| if (!res.ok()) { |
| return res; |
| } |
| if (!result_bitmap.is_empty()) { |
| index_context->set_index_result_for_expr(this, result_bitmap); |
| for (int column_id : column_ids) { |
| index_context->set_true_for_index_status(this, column_id); |
| } |
| } |
| return Status::OK(); |
| } |
| |
| size_t VExpr::estimate_memory(const size_t rows) { |
| if (is_const_and_have_executed()) { |
| return 0; |
| } |
| |
| size_t estimate_size = 0; |
| for (auto& child : _children) { |
| estimate_size += child->estimate_memory(rows); |
| } |
| |
| if (_data_type->have_maximum_size_of_value()) { |
| estimate_size += rows * _data_type->get_size_of_value_in_memory(); |
| } else { |
| estimate_size += rows * 64; /// TODO: need a more reasonable value |
| } |
| return estimate_size; |
| } |
| |
| bool VExpr::fast_execute(VExprContext* context, ColumnPtr& result_column) const { |
| if (context->get_index_context() && |
| context->get_index_context()->get_index_result_column().contains(this)) { |
| // prepare a column to save result |
| result_column = context->get_index_context()->get_index_result_column()[this]; |
| if (_data_type->is_nullable()) { |
| result_column = make_nullable(result_column); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| bool VExpr::equals(const VExpr& other) { |
| return false; |
| } |
| |
| Status VExpr::evaluate_ann_range_search( |
| const segment_v2::AnnRangeSearchRuntime& runtime, |
| const std::vector<std::unique_ptr<segment_v2::IndexIterator>>& index_iterators, |
| const std::vector<ColumnId>& idx_to_cid, |
| const std::vector<std::unique_ptr<segment_v2::ColumnIterator>>& column_iterators, |
| roaring::Roaring& row_bitmap, AnnIndexStats& ann_index_stats) { |
| return Status::OK(); |
| } |
| |
| void VExpr::prepare_ann_range_search(const doris::VectorSearchUserParams& params, |
| segment_v2::AnnRangeSearchRuntime& range_search_runtime, |
| bool& suitable_for_ann_index) { |
| if (!suitable_for_ann_index) { |
| return; |
| } |
| for (auto& child : _children) { |
| child->prepare_ann_range_search(params, range_search_runtime, suitable_for_ann_index); |
| if (!suitable_for_ann_index) { |
| return; |
| } |
| } |
| } |
| |
| bool VExpr::ann_range_search_executedd() { |
| return _has_been_executed; |
| } |
| |
| bool VExpr::ann_dist_is_fulfilled() const { |
| return _virtual_column_is_fulfilled; |
| } |
| |
| #include "common/compile_check_end.h" |
| } // namespace doris::vectorized |