blob: a68a2ba4a7f6225cdbe2c8f7fab750c22cad5cce [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "task_queue.h"
// IWYU pragma: no_include <bits/chrono.h>
#include <chrono> // IWYU pragma: keep
#include <string>
#include "common/logging.h"
#include "pipeline/pipeline_task.h"
namespace doris {
namespace pipeline {
TaskQueue::~TaskQueue() = default;
PipelineTask* SubTaskQueue::try_take(bool is_steal) {
if (_queue.empty()) {
return nullptr;
}
auto task = _queue.front();
_queue.pop();
return task;
}
//////////////////// PriorityTaskQueue ////////////////////
PriorityTaskQueue::PriorityTaskQueue() : _closed(false) {
double factor = 1;
for (int i = SUB_QUEUE_LEVEL - 1; i >= 0; i--) {
_sub_queues[i].set_level_factor(factor);
factor *= LEVEL_QUEUE_TIME_FACTOR;
}
}
void PriorityTaskQueue::close() {
std::unique_lock<std::mutex> lock(_work_size_mutex);
_closed = true;
_wait_task.notify_all();
}
PipelineTask* PriorityTaskQueue::_try_take_unprotected(bool is_steal) {
if (_total_task_size == 0 || _closed) {
return nullptr;
}
double min_vruntime = 0;
int level = -1;
for (int i = 0; i < SUB_QUEUE_LEVEL; ++i) {
double cur_queue_vruntime = _sub_queues[i].get_vruntime();
if (!_sub_queues[i].empty()) {
if (level == -1 || cur_queue_vruntime < min_vruntime) {
level = i;
min_vruntime = cur_queue_vruntime;
}
}
}
DCHECK(level != -1);
_queue_level_min_vruntime = min_vruntime;
auto task = _sub_queues[level].try_take(is_steal);
if (task) {
task->update_queue_level(level);
_total_task_size--;
}
return task;
}
int PriorityTaskQueue::_compute_level(uint64_t runtime) {
for (int i = 0; i < SUB_QUEUE_LEVEL - 1; ++i) {
if (runtime <= _queue_level_limit[i]) {
return i;
}
}
return SUB_QUEUE_LEVEL - 1;
}
PipelineTask* PriorityTaskQueue::try_take(bool is_steal) {
// TODO other efficient lock? e.g. if get lock fail, return null_ptr
std::unique_lock<std::mutex> lock(_work_size_mutex);
return _try_take_unprotected(is_steal);
}
PipelineTask* PriorityTaskQueue::take(uint32_t timeout_ms) {
std::unique_lock<std::mutex> lock(_work_size_mutex);
auto task = _try_take_unprotected(false);
if (task) {
return task;
} else {
if (timeout_ms > 0) {
_wait_task.wait_for(lock, std::chrono::milliseconds(timeout_ms));
} else {
_wait_task.wait(lock);
}
return _try_take_unprotected(false);
}
}
Status PriorityTaskQueue::push(PipelineTask* task) {
if (_closed) {
return Status::InternalError("WorkTaskQueue closed");
}
auto level = _compute_level(task->get_runtime_ns());
std::unique_lock<std::mutex> lock(_work_size_mutex);
// update empty queue's runtime, to avoid too high priority
if (_sub_queues[level].empty() &&
_queue_level_min_vruntime > _sub_queues[level].get_vruntime()) {
_sub_queues[level].adjust_runtime(_queue_level_min_vruntime);
}
_sub_queues[level].push_back(task);
_total_task_size++;
_wait_task.notify_one();
return Status::OK();
}
int PriorityTaskQueue::task_size() {
std::unique_lock<std::mutex> lock(_work_size_mutex);
return _total_task_size;
}
MultiCoreTaskQueue::~MultiCoreTaskQueue() = default;
MultiCoreTaskQueue::MultiCoreTaskQueue(size_t core_size) : TaskQueue(core_size), _closed(false) {
_prio_task_queue_list.reset(new PriorityTaskQueue[core_size]);
}
void MultiCoreTaskQueue::close() {
_closed = true;
for (int i = 0; i < _core_size; ++i) {
_prio_task_queue_list[i].close();
}
}
PipelineTask* MultiCoreTaskQueue::take(size_t core_id) {
PipelineTask* task = nullptr;
while (!_closed) {
task = _prio_task_queue_list[core_id].try_take(false);
if (task) {
task->set_core_id(core_id);
break;
}
task = _steal_take(core_id);
if (task) {
break;
}
task = _prio_task_queue_list[core_id].take(WAIT_CORE_TASK_TIMEOUT_MS /* timeout_ms */);
if (task) {
task->set_core_id(core_id);
break;
}
}
if (task) {
task->pop_out_runnable_queue();
}
return task;
}
PipelineTask* MultiCoreTaskQueue::_steal_take(size_t core_id) {
DCHECK(core_id < _core_size);
size_t next_id = core_id;
for (size_t i = 1; i < _core_size; ++i) {
++next_id;
if (next_id == _core_size) {
next_id = 0;
}
DCHECK(next_id < _core_size);
auto task = _prio_task_queue_list[next_id].try_take(true);
if (task) {
task->set_core_id(next_id);
return task;
}
}
return nullptr;
}
Status MultiCoreTaskQueue::push_back(PipelineTask* task) {
int core_id = task->get_previous_core_id();
if (core_id < 0) {
core_id = _next_core.fetch_add(1) % _core_size;
}
return push_back(task, core_id);
}
Status MultiCoreTaskQueue::push_back(PipelineTask* task, size_t core_id) {
DCHECK(core_id < _core_size);
task->put_in_runnable_queue();
return _prio_task_queue_list[core_id].push(task);
}
bool TaskGroupTaskQueue::TaskGroupSchedEntityComparator::operator()(
const taskgroup::TGPTEntityPtr& lhs_ptr, const taskgroup::TGPTEntityPtr& rhs_ptr) const {
auto lhs_val = lhs_ptr->vruntime_ns();
auto rhs_val = rhs_ptr->vruntime_ns();
if (lhs_val != rhs_val) {
return lhs_val < rhs_val;
} else {
auto l_share = lhs_ptr->cpu_share();
auto r_share = rhs_ptr->cpu_share();
if (l_share != r_share) {
return l_share < r_share;
} else {
return lhs_ptr->task_group_id() < rhs_ptr->task_group_id();
}
}
}
TaskGroupTaskQueue::TaskGroupTaskQueue(size_t core_size)
: TaskQueue(core_size), _min_tg_entity(nullptr) {}
TaskGroupTaskQueue::~TaskGroupTaskQueue() = default;
void TaskGroupTaskQueue::close() {
std::unique_lock<std::mutex> lock(_rs_mutex);
_closed = true;
_wait_task.notify_all();
}
Status TaskGroupTaskQueue::push_back(PipelineTask* task) {
return _push_back<false>(task);
}
Status TaskGroupTaskQueue::push_back(PipelineTask* task, size_t core_id) {
return _push_back<true>(task);
}
template <bool from_executor>
Status TaskGroupTaskQueue::_push_back(PipelineTask* task) {
task->put_in_runnable_queue();
auto* entity = task->get_task_group_entity();
std::unique_lock<std::mutex> lock(_rs_mutex);
entity->task_queue()->emplace(task);
if (_group_entities.find(entity) == _group_entities.end()) {
_enqueue_task_group<from_executor>(entity);
}
_wait_task.notify_one();
return Status::OK();
}
// TODO pipeline support steal
PipelineTask* TaskGroupTaskQueue::take(size_t core_id) {
std::unique_lock<std::mutex> lock(_rs_mutex);
taskgroup::TGPTEntityPtr entity = nullptr;
while (entity == nullptr) {
if (_closed) {
return nullptr;
}
if (_group_entities.empty()) {
_wait_task.wait(lock);
} else {
entity = _next_tg_entity();
if (!entity) {
_wait_task.wait_for(lock, std::chrono::milliseconds(WAIT_CORE_TASK_TIMEOUT_MS));
}
}
}
DCHECK(entity->task_size() > 0);
if (entity->task_size() == 1) {
_dequeue_task_group(entity);
}
auto task = entity->task_queue()->front();
if (task) {
entity->task_queue()->pop();
task->pop_out_runnable_queue();
}
return task;
}
template <bool from_worker>
void TaskGroupTaskQueue::_enqueue_task_group(taskgroup::TGPTEntityPtr tg_entity) {
_total_cpu_share += tg_entity->cpu_share();
if constexpr (!from_worker) {
/**
* If a task group entity leaves task queue for a long time, its v runtime will be very
* small. This can cause it to preempt too many execution time. So, in order to avoid this
* situation, it is necessary to adjust the task group's v runtime.
* */
auto old_v_ns = tg_entity->vruntime_ns();
auto* min_entity = _min_tg_entity.load();
if (min_entity) {
auto min_tg_v = min_entity->vruntime_ns();
auto ideal_r = _ideal_runtime_ns(tg_entity) / 2;
uint64_t new_vruntime_ns = min_tg_v > ideal_r ? min_tg_v - ideal_r : min_tg_v;
if (new_vruntime_ns > old_v_ns) {
tg_entity->adjust_vruntime_ns(new_vruntime_ns);
}
} else if (old_v_ns < _min_tg_v_runtime_ns) {
tg_entity->adjust_vruntime_ns(_min_tg_v_runtime_ns);
}
}
_group_entities.emplace(tg_entity);
VLOG_DEBUG << "enqueue tg " << tg_entity->debug_string()
<< ", group entity size: " << _group_entities.size();
_update_min_tg();
}
void TaskGroupTaskQueue::_dequeue_task_group(taskgroup::TGPTEntityPtr tg_entity) {
_total_cpu_share -= tg_entity->cpu_share();
_group_entities.erase(tg_entity);
VLOG_DEBUG << "dequeue tg " << tg_entity->debug_string()
<< ", group entity size: " << _group_entities.size();
_update_min_tg();
}
void TaskGroupTaskQueue::_update_min_tg() {
auto* min_entity = _next_tg_entity();
_min_tg_entity = min_entity;
if (min_entity) {
auto min_v_runtime = min_entity->vruntime_ns();
if (min_v_runtime > _min_tg_v_runtime_ns) {
_min_tg_v_runtime_ns = min_v_runtime;
}
}
}
// like sched_fair.c calc_delta_fair, THREAD_TIME_SLICE maybe a dynamic value.
uint64_t TaskGroupTaskQueue::_ideal_runtime_ns(taskgroup::TGPTEntityPtr tg_entity) const {
return PipelineTask::THREAD_TIME_SLICE * _core_size * tg_entity->cpu_share() / _total_cpu_share;
}
taskgroup::TGPTEntityPtr TaskGroupTaskQueue::_next_tg_entity() {
taskgroup::TGPTEntityPtr res = nullptr;
for (auto* entity : _group_entities) {
res = entity;
break;
}
return res;
}
void TaskGroupTaskQueue::update_statistics(PipelineTask* task, int64_t time_spent) {
std::unique_lock<std::mutex> lock(_rs_mutex);
auto* entity = task->get_task_group_entity();
auto find_entity = _group_entities.find(entity);
bool is_in_queue = find_entity != _group_entities.end();
VLOG_DEBUG << "update_statistics " << entity->debug_string() << ", in queue:" << is_in_queue;
if (is_in_queue) {
_group_entities.erase(entity);
}
entity->incr_runtime_ns(time_spent);
if (is_in_queue) {
_group_entities.emplace(entity);
_update_min_tg();
}
}
void TaskGroupTaskQueue::update_tg_cpu_share(const taskgroup::TaskGroupInfo& task_group_info,
taskgroup::TGPTEntityPtr entity) {
std::unique_lock<std::mutex> lock(_rs_mutex);
bool is_in_queue = _group_entities.find(entity) != _group_entities.end();
if (is_in_queue) {
_group_entities.erase(entity);
_total_cpu_share -= entity->cpu_share();
}
entity->check_and_update_cpu_share(task_group_info);
if (is_in_queue) {
_group_entities.emplace(entity);
_total_cpu_share += entity->cpu_share();
}
}
} // namespace pipeline
} // namespace doris