| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| #include "task_queue.h" |
| |
| // IWYU pragma: no_include <bits/chrono.h> |
| #include <chrono> // IWYU pragma: keep |
| #include <string> |
| |
| #include "common/logging.h" |
| #include "pipeline/pipeline_task.h" |
| |
| namespace doris { |
| namespace pipeline { |
| |
| TaskQueue::~TaskQueue() = default; |
| |
| PipelineTask* SubTaskQueue::try_take(bool is_steal) { |
| if (_queue.empty()) { |
| return nullptr; |
| } |
| auto task = _queue.front(); |
| _queue.pop(); |
| return task; |
| } |
| |
| //////////////////// PriorityTaskQueue //////////////////// |
| |
| PriorityTaskQueue::PriorityTaskQueue() : _closed(false) { |
| double factor = 1; |
| for (int i = SUB_QUEUE_LEVEL - 1; i >= 0; i--) { |
| _sub_queues[i].set_level_factor(factor); |
| factor *= LEVEL_QUEUE_TIME_FACTOR; |
| } |
| } |
| |
| void PriorityTaskQueue::close() { |
| std::unique_lock<std::mutex> lock(_work_size_mutex); |
| _closed = true; |
| _wait_task.notify_all(); |
| } |
| |
| PipelineTask* PriorityTaskQueue::_try_take_unprotected(bool is_steal) { |
| if (_total_task_size == 0 || _closed) { |
| return nullptr; |
| } |
| |
| double min_vruntime = 0; |
| int level = -1; |
| for (int i = 0; i < SUB_QUEUE_LEVEL; ++i) { |
| double cur_queue_vruntime = _sub_queues[i].get_vruntime(); |
| if (!_sub_queues[i].empty()) { |
| if (level == -1 || cur_queue_vruntime < min_vruntime) { |
| level = i; |
| min_vruntime = cur_queue_vruntime; |
| } |
| } |
| } |
| DCHECK(level != -1); |
| _queue_level_min_vruntime = min_vruntime; |
| |
| auto task = _sub_queues[level].try_take(is_steal); |
| if (task) { |
| task->update_queue_level(level); |
| _total_task_size--; |
| } |
| return task; |
| } |
| |
| int PriorityTaskQueue::_compute_level(uint64_t runtime) { |
| for (int i = 0; i < SUB_QUEUE_LEVEL - 1; ++i) { |
| if (runtime <= _queue_level_limit[i]) { |
| return i; |
| } |
| } |
| return SUB_QUEUE_LEVEL - 1; |
| } |
| |
| PipelineTask* PriorityTaskQueue::try_take(bool is_steal) { |
| // TODO other efficient lock? e.g. if get lock fail, return null_ptr |
| std::unique_lock<std::mutex> lock(_work_size_mutex); |
| return _try_take_unprotected(is_steal); |
| } |
| |
| PipelineTask* PriorityTaskQueue::take(uint32_t timeout_ms) { |
| std::unique_lock<std::mutex> lock(_work_size_mutex); |
| auto task = _try_take_unprotected(false); |
| if (task) { |
| return task; |
| } else { |
| if (timeout_ms > 0) { |
| _wait_task.wait_for(lock, std::chrono::milliseconds(timeout_ms)); |
| } else { |
| _wait_task.wait(lock); |
| } |
| return _try_take_unprotected(false); |
| } |
| } |
| |
| Status PriorityTaskQueue::push(PipelineTask* task) { |
| if (_closed) { |
| return Status::InternalError("WorkTaskQueue closed"); |
| } |
| auto level = _compute_level(task->get_runtime_ns()); |
| std::unique_lock<std::mutex> lock(_work_size_mutex); |
| |
| // update empty queue's runtime, to avoid too high priority |
| if (_sub_queues[level].empty() && |
| _queue_level_min_vruntime > _sub_queues[level].get_vruntime()) { |
| _sub_queues[level].adjust_runtime(_queue_level_min_vruntime); |
| } |
| |
| _sub_queues[level].push_back(task); |
| _total_task_size++; |
| _wait_task.notify_one(); |
| return Status::OK(); |
| } |
| |
| int PriorityTaskQueue::task_size() { |
| std::unique_lock<std::mutex> lock(_work_size_mutex); |
| return _total_task_size; |
| } |
| |
| MultiCoreTaskQueue::~MultiCoreTaskQueue() = default; |
| |
| MultiCoreTaskQueue::MultiCoreTaskQueue(size_t core_size) : TaskQueue(core_size), _closed(false) { |
| _prio_task_queue_list.reset(new PriorityTaskQueue[core_size]); |
| } |
| |
| void MultiCoreTaskQueue::close() { |
| _closed = true; |
| for (int i = 0; i < _core_size; ++i) { |
| _prio_task_queue_list[i].close(); |
| } |
| } |
| |
| PipelineTask* MultiCoreTaskQueue::take(size_t core_id) { |
| PipelineTask* task = nullptr; |
| while (!_closed) { |
| task = _prio_task_queue_list[core_id].try_take(false); |
| if (task) { |
| task->set_core_id(core_id); |
| break; |
| } |
| task = _steal_take(core_id); |
| if (task) { |
| break; |
| } |
| task = _prio_task_queue_list[core_id].take(WAIT_CORE_TASK_TIMEOUT_MS /* timeout_ms */); |
| if (task) { |
| task->set_core_id(core_id); |
| break; |
| } |
| } |
| if (task) { |
| task->pop_out_runnable_queue(); |
| } |
| return task; |
| } |
| |
| PipelineTask* MultiCoreTaskQueue::_steal_take(size_t core_id) { |
| DCHECK(core_id < _core_size); |
| size_t next_id = core_id; |
| for (size_t i = 1; i < _core_size; ++i) { |
| ++next_id; |
| if (next_id == _core_size) { |
| next_id = 0; |
| } |
| DCHECK(next_id < _core_size); |
| auto task = _prio_task_queue_list[next_id].try_take(true); |
| if (task) { |
| task->set_core_id(next_id); |
| return task; |
| } |
| } |
| return nullptr; |
| } |
| |
| Status MultiCoreTaskQueue::push_back(PipelineTask* task) { |
| int core_id = task->get_previous_core_id(); |
| if (core_id < 0) { |
| core_id = _next_core.fetch_add(1) % _core_size; |
| } |
| return push_back(task, core_id); |
| } |
| |
| Status MultiCoreTaskQueue::push_back(PipelineTask* task, size_t core_id) { |
| DCHECK(core_id < _core_size); |
| task->put_in_runnable_queue(); |
| return _prio_task_queue_list[core_id].push(task); |
| } |
| |
| bool TaskGroupTaskQueue::TaskGroupSchedEntityComparator::operator()( |
| const taskgroup::TGPTEntityPtr& lhs_ptr, const taskgroup::TGPTEntityPtr& rhs_ptr) const { |
| auto lhs_val = lhs_ptr->vruntime_ns(); |
| auto rhs_val = rhs_ptr->vruntime_ns(); |
| if (lhs_val != rhs_val) { |
| return lhs_val < rhs_val; |
| } else { |
| auto l_share = lhs_ptr->cpu_share(); |
| auto r_share = rhs_ptr->cpu_share(); |
| if (l_share != r_share) { |
| return l_share < r_share; |
| } else { |
| return lhs_ptr->task_group_id() < rhs_ptr->task_group_id(); |
| } |
| } |
| } |
| |
| TaskGroupTaskQueue::TaskGroupTaskQueue(size_t core_size) |
| : TaskQueue(core_size), _min_tg_entity(nullptr) {} |
| |
| TaskGroupTaskQueue::~TaskGroupTaskQueue() = default; |
| |
| void TaskGroupTaskQueue::close() { |
| std::unique_lock<std::mutex> lock(_rs_mutex); |
| _closed = true; |
| _wait_task.notify_all(); |
| } |
| |
| Status TaskGroupTaskQueue::push_back(PipelineTask* task) { |
| return _push_back<false>(task); |
| } |
| |
| Status TaskGroupTaskQueue::push_back(PipelineTask* task, size_t core_id) { |
| return _push_back<true>(task); |
| } |
| |
| template <bool from_executor> |
| Status TaskGroupTaskQueue::_push_back(PipelineTask* task) { |
| task->put_in_runnable_queue(); |
| auto* entity = task->get_task_group_entity(); |
| std::unique_lock<std::mutex> lock(_rs_mutex); |
| entity->task_queue()->emplace(task); |
| if (_group_entities.find(entity) == _group_entities.end()) { |
| _enqueue_task_group<from_executor>(entity); |
| } |
| _wait_task.notify_one(); |
| return Status::OK(); |
| } |
| |
| // TODO pipeline support steal |
| PipelineTask* TaskGroupTaskQueue::take(size_t core_id) { |
| std::unique_lock<std::mutex> lock(_rs_mutex); |
| taskgroup::TGPTEntityPtr entity = nullptr; |
| while (entity == nullptr) { |
| if (_closed) { |
| return nullptr; |
| } |
| if (_group_entities.empty()) { |
| _wait_task.wait(lock); |
| } else { |
| entity = _next_tg_entity(); |
| if (!entity) { |
| _wait_task.wait_for(lock, std::chrono::milliseconds(WAIT_CORE_TASK_TIMEOUT_MS)); |
| } |
| } |
| } |
| DCHECK(entity->task_size() > 0); |
| if (entity->task_size() == 1) { |
| _dequeue_task_group(entity); |
| } |
| auto task = entity->task_queue()->front(); |
| if (task) { |
| entity->task_queue()->pop(); |
| task->pop_out_runnable_queue(); |
| } |
| return task; |
| } |
| |
| template <bool from_worker> |
| void TaskGroupTaskQueue::_enqueue_task_group(taskgroup::TGPTEntityPtr tg_entity) { |
| _total_cpu_share += tg_entity->cpu_share(); |
| if constexpr (!from_worker) { |
| /** |
| * If a task group entity leaves task queue for a long time, its v runtime will be very |
| * small. This can cause it to preempt too many execution time. So, in order to avoid this |
| * situation, it is necessary to adjust the task group's v runtime. |
| * */ |
| auto old_v_ns = tg_entity->vruntime_ns(); |
| auto* min_entity = _min_tg_entity.load(); |
| if (min_entity) { |
| auto min_tg_v = min_entity->vruntime_ns(); |
| auto ideal_r = _ideal_runtime_ns(tg_entity) / 2; |
| uint64_t new_vruntime_ns = min_tg_v > ideal_r ? min_tg_v - ideal_r : min_tg_v; |
| if (new_vruntime_ns > old_v_ns) { |
| tg_entity->adjust_vruntime_ns(new_vruntime_ns); |
| } |
| } else if (old_v_ns < _min_tg_v_runtime_ns) { |
| tg_entity->adjust_vruntime_ns(_min_tg_v_runtime_ns); |
| } |
| } |
| _group_entities.emplace(tg_entity); |
| VLOG_DEBUG << "enqueue tg " << tg_entity->debug_string() |
| << ", group entity size: " << _group_entities.size(); |
| _update_min_tg(); |
| } |
| |
| void TaskGroupTaskQueue::_dequeue_task_group(taskgroup::TGPTEntityPtr tg_entity) { |
| _total_cpu_share -= tg_entity->cpu_share(); |
| _group_entities.erase(tg_entity); |
| VLOG_DEBUG << "dequeue tg " << tg_entity->debug_string() |
| << ", group entity size: " << _group_entities.size(); |
| _update_min_tg(); |
| } |
| |
| void TaskGroupTaskQueue::_update_min_tg() { |
| auto* min_entity = _next_tg_entity(); |
| _min_tg_entity = min_entity; |
| if (min_entity) { |
| auto min_v_runtime = min_entity->vruntime_ns(); |
| if (min_v_runtime > _min_tg_v_runtime_ns) { |
| _min_tg_v_runtime_ns = min_v_runtime; |
| } |
| } |
| } |
| |
| // like sched_fair.c calc_delta_fair, THREAD_TIME_SLICE maybe a dynamic value. |
| uint64_t TaskGroupTaskQueue::_ideal_runtime_ns(taskgroup::TGPTEntityPtr tg_entity) const { |
| return PipelineTask::THREAD_TIME_SLICE * _core_size * tg_entity->cpu_share() / _total_cpu_share; |
| } |
| |
| taskgroup::TGPTEntityPtr TaskGroupTaskQueue::_next_tg_entity() { |
| taskgroup::TGPTEntityPtr res = nullptr; |
| for (auto* entity : _group_entities) { |
| res = entity; |
| break; |
| } |
| return res; |
| } |
| |
| void TaskGroupTaskQueue::update_statistics(PipelineTask* task, int64_t time_spent) { |
| std::unique_lock<std::mutex> lock(_rs_mutex); |
| auto* entity = task->get_task_group_entity(); |
| auto find_entity = _group_entities.find(entity); |
| bool is_in_queue = find_entity != _group_entities.end(); |
| VLOG_DEBUG << "update_statistics " << entity->debug_string() << ", in queue:" << is_in_queue; |
| if (is_in_queue) { |
| _group_entities.erase(entity); |
| } |
| entity->incr_runtime_ns(time_spent); |
| if (is_in_queue) { |
| _group_entities.emplace(entity); |
| _update_min_tg(); |
| } |
| } |
| |
| void TaskGroupTaskQueue::update_tg_cpu_share(const taskgroup::TaskGroupInfo& task_group_info, |
| taskgroup::TGPTEntityPtr entity) { |
| std::unique_lock<std::mutex> lock(_rs_mutex); |
| bool is_in_queue = _group_entities.find(entity) != _group_entities.end(); |
| if (is_in_queue) { |
| _group_entities.erase(entity); |
| _total_cpu_share -= entity->cpu_share(); |
| } |
| entity->check_and_update_cpu_share(task_group_info); |
| if (is_in_queue) { |
| _group_entities.emplace(entity); |
| _total_cpu_share += entity->cpu_share(); |
| } |
| } |
| |
| } // namespace pipeline |
| } // namespace doris |