blob: 314c1f0acbb26debeb4cfce66eb8fdb3ba11426e [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "vec/olap/vgeneric_iterators.h"
#include <algorithm>
#include <memory>
#include <utility>
#include "common/status.h"
#include "olap/field.h"
#include "olap/iterators.h"
#include "olap/olap_common.h"
#include "olap/rowset/segment_v2/column_reader.h"
#include "olap/rowset/segment_v2/segment.h"
#include "olap/schema.h"
#include "olap/schema_cache.h"
#include "olap/tablet_schema.h"
#include "vec/columns/column.h"
#include "vec/core/block.h"
#include "vec/core/column_with_type_and_name.h"
#include "vec/data_types/data_type.h"
namespace doris {
class RuntimeProfile;
using namespace ErrorCode;
namespace vectorized {
#include "common/compile_check_begin.h"
Status VStatisticsIterator::init(const StorageReadOptions& opts) {
if (!_init) {
_push_down_agg_type_opt = opts.push_down_agg_type_opt;
for (size_t i = 0; i < _schema.num_column_ids(); i++) {
auto cid = _schema.column_id(i);
auto unique_id = _schema.column(cid)->unique_id();
if (_column_iterators_map.count(unique_id) < 1) {
RETURN_IF_ERROR(_segment->new_column_iterator(
opts.tablet_schema->column(cid), &_column_iterators_map[unique_id], &opts));
}
_column_iterators.push_back(_column_iterators_map[unique_id].get());
}
_target_rows = _push_down_agg_type_opt == TPushAggOp::MINMAX ? 2 : _segment->num_rows();
_init = true;
}
return Status::OK();
}
Status VStatisticsIterator::next_batch(Block* block) {
DCHECK(block->columns() == _column_iterators.size());
if (_output_rows < _target_rows) {
block->clear_column_data();
auto columns = block->mutate_columns();
size_t size = _push_down_agg_type_opt == TPushAggOp::MINMAX
? 2
: std::min(_target_rows - _output_rows, MAX_ROW_SIZE_IN_COUNT);
if (_push_down_agg_type_opt == TPushAggOp::COUNT) {
for (auto& column : columns) {
column->insert_many_defaults(size);
}
} else {
for (int i = 0; i < columns.size(); ++i) {
RETURN_IF_ERROR(_column_iterators[i]->next_batch_of_zone_map(&size, columns[i]));
}
}
block->set_columns(std::move(columns));
_output_rows += size;
return Status::OK();
}
return Status::EndOfFile("End of VStatisticsIterator");
}
Status VMergeIteratorContext::block_reset(const std::shared_ptr<Block>& block) {
if (!block->columns()) {
const Schema& schema = _iter->schema();
const auto& column_ids = schema.column_ids();
for (size_t i = 0; i < schema.num_column_ids(); ++i) {
auto column_desc = schema.column(column_ids[i]);
auto data_type = Schema::get_data_type_ptr(*column_desc);
if (data_type == nullptr) {
return Status::RuntimeError("invalid data type");
}
auto column = data_type->create_column();
column->reserve(_block_row_max);
block->insert(ColumnWithTypeAndName(std::move(column), data_type, column_desc->name()));
}
} else {
block->clear_column_data();
}
return Status::OK();
}
bool VMergeIteratorContext::compare(const VMergeIteratorContext& rhs) const {
int cmp_res = UNLIKELY(_compare_columns)
? _block->compare_at(_index_in_block, rhs._index_in_block,
_compare_columns, *rhs._block, -1)
: _block->compare_at(_index_in_block, rhs._index_in_block,
_num_key_columns, *rhs._block, -1);
if (cmp_res != 0) {
return UNLIKELY(_is_reverse) ? cmp_res < 0 : cmp_res > 0;
}
auto col_cmp_res = 0;
if (_sequence_id_idx != -1) {
col_cmp_res = _block->compare_column_at(_index_in_block, rhs._index_in_block,
_sequence_id_idx, *rhs._block, -1);
}
auto result = col_cmp_res == 0 ? data_id() < rhs.data_id() : col_cmp_res < 0;
if (_is_unique) {
result ? set_skip(true) : rhs.set_skip(true);
}
result ? set_same(true) : rhs.set_same(true);
return result;
}
Status VMergeIteratorContext::copy_rows(Block* block, bool advanced) {
Block& src = *_block;
Block& dst = *block;
if (_cur_batch_num == 0) {
return Status::OK();
}
// copy a row to dst block column by column
size_t start = _index_in_block - _cur_batch_num + 1 - advanced;
RETURN_IF_CATCH_EXCEPTION({
for (size_t i = 0; i < _num_columns; ++i) {
auto& s_col = src.get_by_position(i);
auto& d_col = dst.get_by_position(i);
ColumnPtr& s_cp = s_col.column;
ColumnPtr& d_cp = d_col.column;
d_cp->assume_mutable()->insert_range_from(*s_cp, start, _cur_batch_num);
}
});
_cur_batch_num = 0;
return Status::OK();
}
// `advanced = false` when current block finished
Status VMergeIteratorContext::copy_rows(BlockWithSameBit* block_with_same_bit, bool advanced) {
const auto& tmp_pre_ctx_same_bit = get_pre_ctx_same();
block_with_same_bit->same_bit.insert(block_with_same_bit->same_bit.end(),
tmp_pre_ctx_same_bit.begin(),
tmp_pre_ctx_same_bit.begin() + _cur_batch_num);
return copy_rows(block_with_same_bit->block, advanced);
}
Status VMergeIteratorContext::copy_rows(BlockView* view, bool advanced) {
if (_cur_batch_num == 0) {
return Status::OK();
}
size_t start = _index_in_block - _cur_batch_num + 1 - advanced;
const auto& tmp_pre_ctx_same_bit = get_pre_ctx_same();
RETURN_IF_CATCH_EXCEPTION({
for (size_t i = 0; i < _cur_batch_num; ++i) {
view->push_back({_block, static_cast<int>(start + i), tmp_pre_ctx_same_bit[i]});
}
});
_cur_batch_num = 0;
return Status::OK();
}
// This iterator will generate ordered data. For example for schema
// (int, int) this iterator will generator data like
// (0, 1), (1, 2), (2, 3), (3, 4)...
//
// Usage:
// Schema schema;
// VAutoIncrementIterator iter(schema, 1000);
// StorageReadOptions opts;
// RETURN_IF_ERROR(iter.init(opts));
// Block block;
// do {
// st = iter.next_batch(&block);
// } while (st.ok());
class VAutoIncrementIterator : public RowwiseIterator {
public:
// Will generate num_rows rows in total
VAutoIncrementIterator(const Schema& schema, size_t num_rows)
: _schema(schema), _num_rows(num_rows), _rows_returned() {}
~VAutoIncrementIterator() override = default;
// NOTE: Currently, this function will ignore StorageReadOptions
Status init(const StorageReadOptions& opts) override;
Status next_batch(Block* block) override {
int row_idx = 0;
while (_rows_returned < _num_rows) {
for (int j = 0; j < _schema.num_columns(); ++j) {
ColumnWithTypeAndName& vc = block->get_by_position(j);
IColumn& vi = (IColumn&)(*vc.column);
char data[16] = {};
size_t data_len = 0;
const auto* col_schema = _schema.column(j);
switch (col_schema->type()) {
case FieldType::OLAP_FIELD_TYPE_SMALLINT:
*(int16_t*)data = cast_set<int16_t>(_rows_returned + j);
data_len = sizeof(int16_t);
break;
case FieldType::OLAP_FIELD_TYPE_INT:
*(int32_t*)data = cast_set<int32_t>(_rows_returned + j);
data_len = sizeof(int32_t);
break;
case FieldType::OLAP_FIELD_TYPE_BIGINT:
*(int64_t*)data = cast_set<int64_t>(_rows_returned + j);
data_len = sizeof(int64_t);
break;
case FieldType::OLAP_FIELD_TYPE_FLOAT:
*(float*)data = cast_set<float>(_rows_returned + j);
data_len = sizeof(float);
break;
case FieldType::OLAP_FIELD_TYPE_DOUBLE:
*(double*)data = cast_set<double>(_rows_returned + j);
data_len = sizeof(double);
break;
default:
break;
}
vi.insert_data(data, data_len);
}
++row_idx;
++_rows_returned;
}
if (row_idx > 0) {
return Status::OK();
}
return Status::EndOfFile("End of VAutoIncrementIterator");
}
const Schema& schema() const override { return _schema; }
private:
const Schema& _schema;
size_t _num_rows;
size_t _rows_returned;
};
Status VAutoIncrementIterator::init(const StorageReadOptions& opts) {
return Status::OK();
}
Status VMergeIteratorContext::init(const StorageReadOptions& opts) {
_block_row_max = opts.block_row_max;
_record_rowids = opts.record_rowids;
RETURN_IF_ERROR(_load_next_block());
if (valid()) {
RETURN_IF_ERROR(advance());
}
_pre_ctx_same_bit.reserve(_block_row_max);
_pre_ctx_same_bit.assign(_block_row_max, false);
return Status::OK();
}
Status VMergeIteratorContext::advance() {
_skip = false;
_same = false;
// NOTE: we increase _index_in_block directly to valid one check
do {
_index_in_block++;
if (LIKELY(_index_in_block < _block->rows())) {
return Status::OK();
}
// current batch has no data, load next batch
RETURN_IF_ERROR(_load_next_block());
} while (_valid);
return Status::OK();
}
Status VMergeIteratorContext::_load_next_block() {
do {
if (_block != nullptr) {
_block_list.push_back(_block);
_block = nullptr;
}
for (auto it = _block_list.begin(); it != _block_list.end(); it++) {
if (it->use_count() == 1) {
RETURN_IF_ERROR(block_reset(*it));
_block = *it;
_block_list.erase(it);
break;
}
}
if (_block == nullptr) {
_block = std::make_shared<Block>();
RETURN_IF_ERROR(block_reset(_block));
}
Status st = _iter->next_batch(_block.get());
if (!st.ok()) {
_valid = false;
if (st.is<END_OF_FILE>()) {
return Status::OK();
} else {
return st;
}
}
if (UNLIKELY(_record_rowids)) {
RETURN_IF_ERROR(_iter->current_block_row_locations(&_block_row_locations));
}
} while (_block->rows() == 0);
_index_in_block = -1;
_valid = true;
return Status::OK();
}
Status VMergeIterator::init(const StorageReadOptions& opts) {
if (_origin_iters.empty()) {
return Status::OK();
}
_schema = &(_origin_iters[0]->schema());
_record_rowids = opts.record_rowids;
for (auto& iter : _origin_iters) {
auto ctx = std::make_shared<VMergeIteratorContext>(std::move(iter), _sequence_id_idx,
_is_unique, _is_reverse,
opts.read_orderby_key_columns);
RETURN_IF_ERROR(ctx->init(opts));
if (!ctx->valid()) {
continue;
}
_merge_heap.push(ctx);
}
_origin_iters.clear();
_block_row_max = opts.block_row_max;
return Status::OK();
}
// VUnionIterator will read data from input iterator one by one.
class VUnionIterator : public RowwiseIterator {
public:
// Iterators' ownership it transferred to this class.
// This class will delete all iterators when destructs
// Client should not use iterators anymore.
VUnionIterator(std::vector<RowwiseIteratorUPtr>&& v) : _origin_iters(std::move(v)) {}
~VUnionIterator() override = default;
Status init(const StorageReadOptions& opts) override;
Status next_batch(Block* block) override;
const Schema& schema() const override { return *_schema; }
Status current_block_row_locations(std::vector<RowLocation>* locations) override;
void update_profile(RuntimeProfile* profile) override {
if (_cur_iter != nullptr) {
_cur_iter->update_profile(profile);
}
}
private:
const Schema* _schema = nullptr;
RowwiseIteratorUPtr _cur_iter = nullptr;
StorageReadOptions _read_options;
std::vector<RowwiseIteratorUPtr> _origin_iters;
};
Status VUnionIterator::init(const StorageReadOptions& opts) {
if (_origin_iters.empty()) {
return Status::OK();
}
// we use back() and pop_back() of std::vector to handle each iterator,
// so reverse the vector here to keep result block of next_batch to be
// in the same order as the original segments.
std::reverse(_origin_iters.begin(), _origin_iters.end());
_read_options = opts;
_cur_iter = std::move(_origin_iters.back());
RETURN_IF_ERROR(_cur_iter->init(_read_options));
_schema = &_cur_iter->schema();
return Status::OK();
}
Status VUnionIterator::next_batch(Block* block) {
while (_cur_iter != nullptr) {
auto st = _cur_iter->next_batch(block);
if (st.is<END_OF_FILE>()) {
_origin_iters.pop_back();
if (!_origin_iters.empty()) {
_cur_iter = std::move(_origin_iters.back());
RETURN_IF_ERROR(_cur_iter->init(_read_options));
} else {
_cur_iter = nullptr;
}
} else {
return st;
}
}
return Status::EndOfFile("End of VUnionIterator");
}
Status VUnionIterator::current_block_row_locations(std::vector<RowLocation>* locations) {
if (!_cur_iter) {
locations->clear();
return Status::EndOfFile("End of VUnionIterator");
}
return _cur_iter->current_block_row_locations(locations);
}
RowwiseIteratorUPtr new_merge_iterator(std::vector<RowwiseIteratorUPtr>&& inputs,
int sequence_id_idx, bool is_unique, bool is_reverse,
uint64_t* merged_rows) {
// when the size of inputs is 1, we also need to use VMergeIterator, because the
// next_block_view function only be implemented in VMergeIterator. The reason why
// the size of inputs is 1 is that the segment was filtered out by zone map or others.
return std::make_unique<VMergeIterator>(std::move(inputs), sequence_id_idx, is_unique,
is_reverse, merged_rows);
}
RowwiseIteratorUPtr new_union_iterator(std::vector<RowwiseIteratorUPtr>&& inputs) {
if (inputs.size() == 1) {
return std::move(inputs[0]);
}
return std::make_unique<VUnionIterator>(std::move(inputs));
}
RowwiseIterator* new_vstatistics_iterator(std::shared_ptr<Segment> segment, const Schema& schema) {
return new VStatisticsIterator(segment, schema);
}
RowwiseIteratorUPtr new_auto_increment_iterator(const Schema& schema, size_t num_rows) {
return std::make_unique<VAutoIncrementIterator>(schema, num_rows);
}
#include "common/compile_check_end.h"
} // namespace vectorized
} // namespace doris