blob: aac3f31de1e5d593a7e2933d4d49bb6acbc724ab [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This file is copied from
// https://github.com/ClickHouse/ClickHouse/blob/master/src/Functions/Modulo.cpp
// and modified by Doris
#include <string.h>
#include <cmath>
#include <memory>
#include <utility>
#include "runtime/decimalv2_value.h"
#include "runtime/primitive_type.h"
#include "vec/columns/column_decimal.h"
#include "vec/columns/column_vector.h"
#include "vec/core/types.h"
#include "vec/data_types/data_type_decimal.h"
#include "vec/data_types/data_type_number.h"
#include "vec/data_types/number_traits.h"
#include "vec/functions/cast_type_to_either.h"
#include "vec/functions/simple_function_factory.h"
namespace doris::vectorized {
template <typename A, typename B>
inline void throw_if_division_leads_to_FPE(A a, B b) {
// http://avva.livejournal.com/2548306.html
// (-9223372036854775808 % -1) will cause coredump directly, so check this case to throw exception, or maybe could return 0 as result
if constexpr (IsSignedV<A> && IsSignedV<B>) {
if (b == -1 && a == std::numeric_limits<A>::min()) {
throw Exception(ErrorCode::INVALID_ARGUMENT,
"Division of minimal signed number by minus one is an undefined "
"behavior, {} % {}. ",
a, b);
}
}
}
template <typename Impl>
class FunctionMod : public IFunction {
static constexpr bool result_is_decimal = Impl::result_is_decimal;
public:
static constexpr auto name = Impl::name;
static FunctionPtr create() { return std::make_shared<FunctionMod>(); }
FunctionMod() = default;
String get_name() const override { return name; }
bool need_replace_null_data_to_default() const override {
return Impl::need_replace_null_data_to_default;
}
size_t get_number_of_arguments() const override { return 2; }
DataTypes get_variadic_argument_types_impl() const override {
return Impl::get_variadic_argument_types();
}
DataTypePtr get_return_type_impl(const DataTypes& arguments) const override {
return make_nullable(arguments[0]);
}
Status execute_impl(FunctionContext* context, Block& block, const ColumnNumbers& arguments,
uint32_t result, size_t input_rows_count) const override {
auto& column_left = block.get_by_position(arguments[0]).column;
auto& column_right = block.get_by_position(arguments[1]).column;
const auto* type_left = assert_cast<const typename Impl::DataTypeA*>(
block.get_by_position(arguments[0]).type.get());
const auto* type_right = assert_cast<const typename Impl::DataTypeB*>(
block.get_by_position(arguments[1]).type.get());
const auto& res_data_type = remove_nullable(block.get_by_position(result).type);
bool is_const_left = is_column_const(*column_left);
bool is_const_right = is_column_const(*column_right);
ColumnPtr column_result = nullptr;
if (is_const_left && is_const_right) {
column_result = constant_constant(column_left, column_right, type_left, type_right,
res_data_type, context->check_overflow_for_decimal());
} else if (is_const_left) {
column_result = constant_vector(column_left, column_right, type_left, type_right,
res_data_type, context->check_overflow_for_decimal());
} else if (is_const_right) {
column_result = vector_constant(column_left, column_right, type_left, type_right,
res_data_type, context->check_overflow_for_decimal());
} else {
column_result = vector_vector(column_left, column_right, type_left, type_right,
res_data_type, context->check_overflow_for_decimal());
}
block.replace_by_position(result, std::move(column_result));
return Status::OK();
}
private:
ColumnPtr constant_constant(ColumnPtr column_left, ColumnPtr column_right,
const typename Impl::DataTypeA* type_left,
const typename Impl::DataTypeB* type_right,
DataTypePtr res_data_type, bool check_overflow_for_decimal) const {
const auto* column_left_ptr = assert_cast<const ColumnConst*>(column_left.get());
const auto* column_right_ptr = assert_cast<const ColumnConst*>(column_right.get());
DCHECK(column_left_ptr != nullptr && column_right_ptr != nullptr);
ColumnPtr column_result = nullptr;
if constexpr (result_is_decimal) {
if constexpr (Impl::DataTypeA::PType == TYPE_DECIMALV2) {
if (!cast_type_to_either<DataTypeDecimalV2>(
remove_nullable(res_data_type).get(), [&](const auto& type_result) {
auto max_and_multiplier = Impl::get_max_and_multiplier(
type_left, type_right, type_result);
column_result = Impl::constant_constant(
column_left_ptr->template get_value<typename Impl::ArgA>(),
column_right_ptr->template get_value<typename Impl::ArgB>(),
max_and_multiplier.first, max_and_multiplier.second,
type_result, check_overflow_for_decimal);
return true;
})) {
throw Exception(ErrorCode::INTERNAL_ERROR,
"Wrong type. Expected: Decimal, Actually: {}",
type_to_string(res_data_type->get_primitive_type()));
}
} else {
if (!cast_type_to_either<DataTypeDecimal32, DataTypeDecimal64, DataTypeDecimal128,
DataTypeDecimal256>(
remove_nullable(res_data_type).get(), [&](const auto& type_result) {
auto max_and_multiplier = Impl::get_max_and_multiplier(
type_left, type_right, type_result);
column_result = Impl::constant_constant(
column_left_ptr->template get_value<typename Impl::ArgA>(),
column_right_ptr->template get_value<typename Impl::ArgB>(),
max_and_multiplier.first, max_and_multiplier.second,
type_result, check_overflow_for_decimal);
return true;
})) {
throw Exception(ErrorCode::INTERNAL_ERROR,
"Wrong type. Expected: Decimal, Actually: {}",
type_to_string(res_data_type->get_primitive_type()));
}
}
} else {
column_result = Impl::constant_constant(
column_left_ptr->template get_value<typename Impl::ArgA>(),
column_right_ptr->template get_value<typename Impl::ArgB>());
}
return ColumnConst::create(std::move(column_result), column_left->size());
}
ColumnPtr vector_constant(ColumnPtr column_left, ColumnPtr column_right,
const typename Impl::DataTypeA* type_left,
const typename Impl::DataTypeB* type_right, DataTypePtr res_data_type,
bool check_overflow_for_decimal) const {
const auto* column_right_ptr = assert_cast<const ColumnConst*>(column_right.get());
DCHECK(column_right_ptr != nullptr);
ColumnPtr res = nullptr;
if constexpr (result_is_decimal) {
if constexpr (Impl::DataTypeA::PType == TYPE_DECIMALV2) {
if (!cast_type_to_either<DataTypeDecimalV2>(
remove_nullable(res_data_type).get(), [&](const auto& type_result) {
auto max_and_multiplier = Impl::get_max_and_multiplier(
type_left, type_right, type_result);
res = Impl::vector_constant(
column_left->get_ptr(),
column_right_ptr->template get_value<typename Impl::ArgB>(),
max_and_multiplier.first, max_and_multiplier.second,
type_result, check_overflow_for_decimal);
return true;
})) {
throw Exception(ErrorCode::INTERNAL_ERROR,
"Wrong type. Expected: Decimal, Actually: {}",
type_to_string(res_data_type->get_primitive_type()));
}
} else {
if (!cast_type_to_either<DataTypeDecimal32, DataTypeDecimal64, DataTypeDecimal128,
DataTypeDecimal256>(
remove_nullable(res_data_type).get(), [&](const auto& type_result) {
auto max_and_multiplier = Impl::get_max_and_multiplier(
type_left, type_right, type_result);
res = Impl::vector_constant(
column_left->get_ptr(),
column_right_ptr->template get_value<typename Impl::ArgB>(),
max_and_multiplier.first, max_and_multiplier.second,
type_result, check_overflow_for_decimal);
return true;
})) {
throw Exception(ErrorCode::INTERNAL_ERROR,
"Wrong type. Expected: Decimal, Actually: {}",
type_to_string(res_data_type->get_primitive_type()));
}
}
} else {
res = Impl::vector_constant(
column_left->get_ptr(),
column_right_ptr->template get_value<typename Impl::ArgB>());
}
return res;
}
ColumnPtr constant_vector(ColumnPtr column_left, ColumnPtr column_right,
const typename Impl::DataTypeA* type_left,
const typename Impl::DataTypeB* type_right, DataTypePtr res_data_type,
bool check_overflow_for_decimal) const {
const auto* column_left_ptr = assert_cast<const ColumnConst*>(column_left.get());
DCHECK(column_left_ptr != nullptr);
ColumnPtr res = nullptr;
if constexpr (result_is_decimal) {
if constexpr (Impl::DataTypeA::PType == TYPE_DECIMALV2) {
if (!cast_type_to_either<DataTypeDecimalV2>(
remove_nullable(res_data_type).get(), [&](const auto& type_result) {
auto max_and_multiplier = Impl::get_max_and_multiplier(
type_left, type_right, type_result);
res = Impl::constant_vector(
column_left_ptr->template get_value<typename Impl::ArgA>(),
column_right->get_ptr(), max_and_multiplier.first,
max_and_multiplier.second, type_result,
check_overflow_for_decimal);
return true;
})) {
throw Exception(ErrorCode::INTERNAL_ERROR,
"Wrong type. Expected: Decimal, Actually: {}",
type_to_string(res_data_type->get_primitive_type()));
}
} else {
if (!cast_type_to_either<DataTypeDecimal32, DataTypeDecimal64, DataTypeDecimal128,
DataTypeDecimal256>(
remove_nullable(res_data_type).get(), [&](const auto& type_result) {
auto max_and_multiplier = Impl::get_max_and_multiplier(
type_left, type_right, type_result);
res = Impl::constant_vector(
column_left_ptr->template get_value<typename Impl::ArgA>(),
column_right->get_ptr(), max_and_multiplier.first,
max_and_multiplier.second, type_result,
check_overflow_for_decimal);
return true;
})) {
throw Exception(ErrorCode::INTERNAL_ERROR,
"Wrong type. Expected: Decimal, Actually: {}",
type_to_string(res_data_type->get_primitive_type()));
}
}
} else {
res = Impl::constant_vector(column_left_ptr->template get_value<typename Impl::ArgA>(),
column_right->get_ptr());
}
return res;
}
ColumnPtr vector_vector(ColumnPtr column_left, ColumnPtr column_right,
const typename Impl::DataTypeA* type_left,
const typename Impl::DataTypeB* type_right, DataTypePtr res_data_type,
bool check_overflow_for_decimal) const {
ColumnPtr res = nullptr;
if constexpr (result_is_decimal) {
if constexpr (Impl::DataTypeA::PType == TYPE_DECIMALV2) {
if (!cast_type_to_either<DataTypeDecimalV2>(
remove_nullable(res_data_type).get(), [&](const auto& type_result) {
auto max_and_multiplier = Impl::get_max_and_multiplier(
type_left, type_right, type_result);
res = Impl::vector_vector(
column_left->get_ptr(), column_right->get_ptr(),
max_and_multiplier.first, max_and_multiplier.second,
type_result, check_overflow_for_decimal);
return true;
})) {
throw Exception(ErrorCode::INTERNAL_ERROR,
"Wrong type. Expected: Decimal, Actually: {}",
type_to_string(res_data_type->get_primitive_type()));
}
} else {
if (!cast_type_to_either<DataTypeDecimal32, DataTypeDecimal64, DataTypeDecimal128,
DataTypeDecimal256>(
remove_nullable(res_data_type).get(), [&](const auto& type_result) {
auto max_and_multiplier = Impl::get_max_and_multiplier(
type_left, type_right, type_result);
res = Impl::vector_vector(
column_left->get_ptr(), column_right->get_ptr(),
max_and_multiplier.first, max_and_multiplier.second,
type_result, check_overflow_for_decimal);
return true;
})) {
throw Exception(ErrorCode::INTERNAL_ERROR,
"Wrong type. Expected: Decimal, Actually: {}",
type_to_string(res_data_type->get_primitive_type()));
}
}
} else {
res = Impl::vector_vector(column_left->get_ptr(), column_right->get_ptr());
}
return res;
}
};
static const DecimalV2Value one(1, 0);
template <typename Impl>
struct ModNumericImpl {
static constexpr auto name = Impl::name;
static constexpr bool result_is_decimal = false;
using ArgA = typename Impl::ArgA;
using ArgB = typename Impl::ArgB;
using ColumnType = typename Impl::ColumnType;
using DataTypeA = typename Impl::DataTypeA;
using DataTypeB = typename Impl::DataTypeB;
constexpr static bool need_replace_null_data_to_default = false;
static DataTypes get_variadic_argument_types() { return Impl::get_variadic_argument_types(); }
static ColumnPtr constant_constant(ArgA a, ArgB b) {
auto column_result = ColumnType ::create(1);
auto null_map = ColumnUInt8::create(1, 0);
column_result->get_element(0) = Impl::apply(a, b, null_map->get_element(0));
return ColumnNullable::create(std::move(column_result), std::move(null_map));
}
static ColumnPtr vector_constant(ColumnPtr column_left, ArgB b) {
const auto column_left_ptr = assert_cast<const ColumnType*>(column_left.get());
auto column_result = ColumnType::create(column_left->size());
DCHECK(column_left_ptr != nullptr);
auto null_map = ColumnUInt8::create(column_left->size(), 0);
Impl::apply(column_left_ptr->get_data(), b, column_result->get_data(),
null_map->get_data());
return ColumnNullable::create(std::move(column_result), std::move(null_map));
}
static ColumnPtr constant_vector(ArgA a, ColumnPtr column_right) {
const auto column_right_ptr = assert_cast<const ColumnType*>(column_right.get());
auto column_result = ColumnType::create(column_right->size());
DCHECK(column_right_ptr != nullptr);
auto null_map = ColumnUInt8::create(column_right->size(), 0);
auto& b = column_right_ptr->get_data();
auto& c = column_result->get_data();
auto& n = null_map->get_data();
size_t size = b.size();
for (size_t i = 0; i < size; ++i) {
c[i] = Impl::apply(a, b[i], n[i]);
}
return ColumnNullable::create(std::move(column_result), std::move(null_map));
}
static ColumnPtr vector_vector(ColumnPtr column_left, ColumnPtr column_right) {
const auto* column_left_ptr = assert_cast<const ColumnType*>(column_left.get());
const auto* column_right_ptr = assert_cast<const ColumnType*>(column_right.get());
auto column_result = ColumnType::create(column_left->size());
DCHECK(column_left_ptr != nullptr && column_right_ptr != nullptr);
auto null_map = ColumnUInt8::create(column_result->size(), 0);
auto& a = column_left_ptr->get_data();
auto& b = column_right_ptr->get_data();
auto& c = column_result->get_data();
auto& n = null_map->get_data();
size_t size = a.size();
for (size_t i = 0; i < size; ++i) {
c[i] = Impl::apply(a[i], b[i], n[i]);
}
return ColumnNullable::create(std::move(column_result), std::move(null_map));
}
};
template <PrimitiveType Type>
struct ModuloNumericImpl {
static constexpr auto name = "mod";
using ArgA = typename PrimitiveTypeTraits<Type>::CppNativeType;
using ArgB = typename PrimitiveTypeTraits<Type>::CppNativeType;
using ColumnType = typename PrimitiveTypeTraits<Type>::ColumnType;
using DataTypeA = typename PrimitiveTypeTraits<Type>::DataType;
using DataTypeB = typename PrimitiveTypeTraits<Type>::DataType;
static DataTypes get_variadic_argument_types() {
return {std::make_shared<typename PrimitiveTypeTraits<Type>::DataType>(),
std::make_shared<typename PrimitiveTypeTraits<Type>::DataType>()};
}
static void apply(const typename ColumnType::Container& a, ArgB b,
typename ColumnType::Container& c, PaddedPODArray<UInt8>& null_map) {
size_t size = c.size();
UInt8 is_null = b == 0;
memset(null_map.data(), is_null, sizeof(UInt8) * size);
if (!is_null) {
for (size_t i = 0; i < size; i++) {
if constexpr (is_float_or_double(Type)) {
c[i] = std::fmod((double)a[i], (double)b);
} else {
throw_if_division_leads_to_FPE(a[i], b);
c[i] = a[i] % b;
}
}
}
}
static inline typename PrimitiveTypeTraits<Type>::CppNativeType apply(ArgA a, ArgB b,
UInt8& is_null) {
is_null = b == 0;
b += is_null;
if constexpr (is_float_or_double(Type)) {
return std::fmod((double)a, (double)b);
} else {
throw_if_division_leads_to_FPE(a, b);
return a % b;
}
}
};
template <PrimitiveType Type>
struct PModuloNumericImpl {
using ArgA = typename PrimitiveTypeTraits<Type>::CppNativeType;
using ArgB = typename PrimitiveTypeTraits<Type>::CppNativeType;
using ColumnType = typename PrimitiveTypeTraits<Type>::ColumnType;
using DataTypeA = typename PrimitiveTypeTraits<Type>::DataType;
using DataTypeB = typename PrimitiveTypeTraits<Type>::DataType;
static constexpr auto name = "pmod";
static DataTypes get_variadic_argument_types() {
return {std::make_shared<typename PrimitiveTypeTraits<Type>::DataType>(),
std::make_shared<typename PrimitiveTypeTraits<Type>::DataType>()};
}
static void apply(const typename ColumnType::Container& a, ArgB b,
typename PrimitiveTypeTraits<Type>::ColumnType::Container& c,
PaddedPODArray<UInt8>& null_map) {
size_t size = c.size();
UInt8 is_null = b == 0;
memset(null_map.data(), is_null, size);
if (!is_null) {
for (size_t i = 0; i < size; i++) {
if constexpr (is_float_or_double(Type)) {
c[i] = std::fmod(std::fmod((double)a[i], (double)b) + (double)b, double(b));
} else {
throw_if_division_leads_to_FPE(a[i], b);
c[i] = (a[i] % b + b) % b;
}
}
}
}
static inline typename PrimitiveTypeTraits<Type>::CppNativeType apply(ArgA a, ArgB b,
UInt8& is_null) {
is_null = b == 0;
b += is_null;
if constexpr (is_float_or_double(Type)) {
return std::fmod(std::fmod((double)a, (double)b) + (double)b, (double)b);
} else {
throw_if_division_leads_to_FPE(a, b);
return (a % b + b) % b;
}
}
template <PrimitiveType Result = TYPE_DECIMALV2>
static inline DecimalV2Value apply(DecimalV2Value a, DecimalV2Value b, UInt8& is_null) {
is_null = b == DecimalV2Value(0);
b += DecimalV2Value(is_null);
return (a % b + b) % b;
}
};
template <PrimitiveType TypeA, PrimitiveType TypeB>
struct ModuloDecimalImpl {
static_assert(is_decimal(TypeA) && is_decimal(TypeB));
static_assert((TypeA == TYPE_DECIMALV2 && TypeB == TYPE_DECIMALV2) ||
(TypeA != TYPE_DECIMALV2 && TypeB != TYPE_DECIMALV2));
static constexpr auto name = "mod";
static constexpr auto is_pmod = false;
using ArgA = typename PrimitiveTypeTraits<TypeA>::ColumnItemType;
using ArgB = typename PrimitiveTypeTraits<TypeB>::ColumnItemType;
using ArgNativeTypeA = typename PrimitiveTypeTraits<TypeA>::CppNativeType;
using ArgNativeTypeB = typename PrimitiveTypeTraits<TypeB>::CppNativeType;
using DataTypeA = typename PrimitiveTypeTraits<TypeA>::DataType;
using DataTypeB = typename PrimitiveTypeTraits<TypeB>::DataType;
using ColumnTypeA = typename PrimitiveTypeTraits<TypeA>::ColumnType;
using ColumnTypeB = typename PrimitiveTypeTraits<TypeB>::ColumnType;
static DataTypes get_variadic_argument_types() {
return {std::make_shared<typename PrimitiveTypeTraits<TypeA>::DataType>(),
std::make_shared<typename PrimitiveTypeTraits<TypeB>::DataType>()};
}
static inline DecimalV2Value apply(DecimalV2Value a, DecimalV2Value b, UInt8& is_null) {
is_null = b == DecimalV2Value(0);
return a % (b + DecimalV2Value(is_null));
}
};
template <typename Impl>
struct ModDecimalImpl {
static constexpr auto name = Impl::name;
static constexpr bool result_is_decimal = true;
using ArgA = typename Impl::ArgA;
using ArgB = typename Impl::ArgB;
using ArgNativeTypeA = typename Impl::ArgNativeTypeA;
using ArgNativeTypeB = typename Impl::ArgNativeTypeB;
using DataTypeA = typename Impl::DataTypeA;
using DataTypeB = typename Impl::DataTypeB;
using ColumnTypeA = typename Impl::ColumnTypeA;
using ColumnTypeB = typename Impl::ColumnTypeB;
constexpr static bool need_replace_null_data_to_default = true;
static DataTypes get_variadic_argument_types() { return Impl::get_variadic_argument_types(); }
template <PrimitiveType ResultType>
requires(is_decimal(ResultType) && ResultType != TYPE_DECIMALV2)
static inline typename PrimitiveTypeTraits<ResultType>::CppNativeType impl(ArgNativeTypeA a,
ArgNativeTypeB b,
UInt8& is_null) {
is_null = b == 0;
b += is_null;
throw_if_division_leads_to_FPE(a, b);
if constexpr (Impl::is_pmod) {
return (a % b + b) % b;
} else {
return static_cast<typename PrimitiveTypeTraits<ResultType>::CppNativeType>(a) % b;
}
}
template <PrimitiveType ResultType>
requires(is_decimal(ResultType))
static ColumnPtr constant_constant(
ArgA a, ArgB b,
const typename PrimitiveTypeTraits<ResultType>::CppType& max_result_number,
const typename PrimitiveTypeTraits<ResultType>::CppType& scale_diff_multiplier,
const DataTypeDecimal<ResultType>& res_data_type, bool check_overflow_for_decimal) {
auto column_result = ColumnDecimal<ResultType>::create(1, res_data_type.get_scale());
auto null_map = ColumnUInt8::create(1, 0);
if (check_overflow_for_decimal) {
column_result->get_element(0) =
typename PrimitiveTypeTraits<ResultType>::ColumnItemType(
apply<true, ResultType>(a.value, b.value, null_map->get_element(0),
max_result_number));
} else {
column_result->get_element(0) =
typename PrimitiveTypeTraits<ResultType>::ColumnItemType(
apply<false, ResultType>(a.value, b.value, null_map->get_element(0),
max_result_number));
}
return ColumnNullable::create(std::move(column_result), std::move(null_map));
}
template <PrimitiveType ResultType>
requires(is_decimal(ResultType))
static ColumnPtr vector_constant(
ColumnPtr column_left, ArgB b,
const typename PrimitiveTypeTraits<ResultType>::CppType& max_result_number,
const typename PrimitiveTypeTraits<ResultType>::CppType& scale_diff_multiplier,
const DataTypeDecimal<ResultType>& res_data_type, bool check_overflow_for_decimal) {
const auto* column_left_ptr = assert_cast<const ColumnTypeA*>(column_left.get());
auto column_result =
ColumnDecimal<ResultType>::create(column_left->size(), res_data_type.get_scale());
DCHECK(column_left_ptr != nullptr);
auto null_map = ColumnUInt8::create(column_left->size(), 0);
const auto& a = column_left_ptr->get_data().data();
const auto& c = column_result->get_data().data();
auto& n = null_map->get_data();
auto sz = column_left->size();
if (check_overflow_for_decimal) {
for (size_t i = 0; i < sz; ++i) {
c[i] = typename DataTypeDecimal<ResultType>::FieldType(
apply<true, ResultType>(a[i].value, b.value, n[i], max_result_number));
}
} else {
for (size_t i = 0; i < sz; ++i) {
c[i] = typename DataTypeDecimal<ResultType>::FieldType(
apply<false, ResultType>(a[i].value, b.value, n[i], max_result_number));
}
}
return ColumnNullable::create(std::move(column_result), std::move(null_map));
}
template <PrimitiveType ResultType>
requires(is_decimal(ResultType))
static ColumnPtr constant_vector(
ArgA a, ColumnPtr column_right,
const typename PrimitiveTypeTraits<ResultType>::CppType& max_result_number,
const typename PrimitiveTypeTraits<ResultType>::CppType& scale_diff_multiplier,
const DataTypeDecimal<ResultType>& res_data_type, bool check_overflow_for_decimal) {
const auto* column_right_ptr = assert_cast<const ColumnTypeB*>(column_right.get());
auto column_result =
ColumnDecimal<ResultType>::create(column_right->size(), res_data_type.get_scale());
DCHECK(column_right_ptr != nullptr);
auto null_map = ColumnUInt8::create(column_right->size(), 0);
const auto& b = column_right_ptr->get_data().data();
const auto& c = column_result->get_data().data();
auto& n = null_map->get_data();
auto sz = column_right->size();
if (check_overflow_for_decimal) {
for (size_t i = 0; i < sz; ++i) {
c[i] = typename DataTypeDecimal<ResultType>::FieldType(
apply<true, ResultType>(a.value, b[i].value, n[i], max_result_number));
}
} else {
for (size_t i = 0; i < sz; ++i) {
c[i] = typename DataTypeDecimal<ResultType>::FieldType(
apply<false, ResultType>(a.value, b[i].value, n[i], max_result_number));
}
}
return ColumnNullable::create(std::move(column_result), std::move(null_map));
}
template <PrimitiveType ResultType>
requires(is_decimal(ResultType))
static ColumnPtr vector_vector(
ColumnPtr column_left, ColumnPtr column_right,
const typename PrimitiveTypeTraits<ResultType>::CppType max_result_number,
const typename PrimitiveTypeTraits<ResultType>::CppType scale_diff_multiplier,
const DataTypeDecimal<ResultType>& res_data_type, bool check_overflow_for_decimal) {
const auto* column_left_ptr = assert_cast<const ColumnTypeA*>(column_left.get());
const auto* column_right_ptr = assert_cast<const ColumnTypeB*>(column_right.get());
auto column_result =
ColumnDecimal<ResultType>::create(column_left->size(), res_data_type.get_scale());
DCHECK(column_left_ptr != nullptr && column_right_ptr != nullptr);
// function divide, modulo and pmod
auto null_map = ColumnUInt8::create(column_result->size(), 0);
const auto& a = column_left_ptr->get_data().data();
const auto& b = column_right_ptr->get_data().data();
const auto& c = column_result->get_data().data();
auto& n = null_map->get_data();
auto sz = column_right->size();
if constexpr (DataTypeA::PType == TYPE_DECIMALV2) {
if (check_overflow_for_decimal) {
for (size_t i = 0; i < sz; ++i) {
c[i] = Decimal128V2(apply<true, TYPE_DECIMALV2>(a[i].value, b[i].value, n[i],
max_result_number));
}
} else {
for (size_t i = 0; i < sz; ++i) {
c[i] = Decimal128V2(apply<false, TYPE_DECIMALV2>(a[i].value, b[i].value, n[i],
max_result_number));
}
}
} else {
if (check_overflow_for_decimal) {
for (size_t i = 0; i < sz; ++i) {
c[i] = typename DataTypeDecimal<ResultType>::FieldType(apply<true, ResultType>(
a[i].value, b[i].value, n[i], max_result_number));
}
} else {
for (size_t i = 0; i < sz; ++i) {
c[i] = typename DataTypeDecimal<ResultType>::FieldType(apply<false, ResultType>(
a[i].value, b[i].value, n[i], max_result_number));
}
}
}
return ColumnNullable::create(std::move(column_result), std::move(null_map));
}
template <bool check_overflow_for_decimal, PrimitiveType ResultType>
requires(is_decimal(ResultType))
static ALWAYS_INLINE typename PrimitiveTypeTraits<ResultType>::CppNativeType apply(
ArgNativeTypeA a, ArgNativeTypeB b, UInt8& is_null,
const typename PrimitiveTypeTraits<ResultType>::CppType& max_result_number) {
if constexpr (DataTypeA::PType == TYPE_DECIMALV2) {
DecimalV2Value l(a);
DecimalV2Value r(b);
auto ans = Impl::apply(l, r, is_null);
using ANS_TYPE = std::decay_t<decltype(ans)>;
if constexpr (check_overflow_for_decimal) {
if constexpr (std::is_same_v<ANS_TYPE, DecimalV2Value>) {
if (ans.value() > max_result_number.value() ||
ans.value() < -max_result_number.value()) {
throw Exception(
ErrorCode::ARITHMETIC_OVERFLOW_ERRROR,
"Arithmetic overflow: {} {} {} = {}, result type: {}",
DecimalV2Value(a).to_string(), name, DecimalV2Value(b).to_string(),
DecimalV2Value(ans).to_string(), type_to_string(ResultType));
}
} else if constexpr (IsDecimalNumber<ANS_TYPE>) {
if (ans.value > max_result_number.value ||
ans.value < -max_result_number.value) {
throw Exception(
ErrorCode::ARITHMETIC_OVERFLOW_ERRROR,
"Arithmetic overflow: {} {} {} = {}, result type: {}",
DecimalV2Value(a).to_string(), name, DecimalV2Value(b).to_string(),
DecimalV2Value(ans).to_string(), type_to_string(ResultType));
}
} else {
if (ans > max_result_number.value || ans < -max_result_number.value) {
throw Exception(
ErrorCode::ARITHMETIC_OVERFLOW_ERRROR,
"Arithmetic overflow: {} {} {} = {}, result type: {}",
DecimalV2Value(a).to_string(), name, DecimalV2Value(b).to_string(),
DecimalV2Value(ans).to_string(), type_to_string(ResultType));
}
}
}
typename PrimitiveTypeTraits<ResultType>::CppNativeType result {};
memcpy(&result, &ans, std::min(sizeof(result), sizeof(ans)));
return result;
} else {
return impl<ResultType>(a, b, is_null);
}
}
template <PrimitiveType PT>
static std::pair<typename PrimitiveTypeTraits<PT>::CppType,
typename PrimitiveTypeTraits<PT>::CppType>
get_max_and_multiplier(const DataTypeA* type_left, const DataTypeB* type_right,
const DataTypeDecimal<PT>& type_result) {
auto max_result_number =
DataTypeDecimal<PT>::get_max_digits_number(type_result.get_precision());
auto orig_result_scale = type_left->get_scale() + type_right->get_scale();
auto result_scale = type_result.get_scale();
DCHECK(orig_result_scale >= result_scale);
auto scale_diff_multiplier =
DataTypeDecimal<PT>::get_scale_multiplier(orig_result_scale - result_scale);
return {typename PrimitiveTypeTraits<PT>::CppType(max_result_number),
typename PrimitiveTypeTraits<PT>::CppType(scale_diff_multiplier)};
}
};
void register_function_modulo(SimpleFunctionFactory& factory) {
factory.register_function<FunctionMod<ModNumericImpl<ModuloNumericImpl<TYPE_TINYINT>>>>();
factory.register_function<FunctionMod<ModNumericImpl<ModuloNumericImpl<TYPE_SMALLINT>>>>();
factory.register_function<FunctionMod<ModNumericImpl<ModuloNumericImpl<TYPE_INT>>>>();
factory.register_function<FunctionMod<ModNumericImpl<ModuloNumericImpl<TYPE_BIGINT>>>>();
factory.register_function<FunctionMod<ModNumericImpl<ModuloNumericImpl<TYPE_LARGEINT>>>>();
factory.register_function<FunctionMod<ModNumericImpl<ModuloNumericImpl<TYPE_FLOAT>>>>();
factory.register_function<FunctionMod<ModNumericImpl<ModuloNumericImpl<TYPE_DOUBLE>>>>();
factory.register_function<FunctionMod<ModNumericImpl<PModuloNumericImpl<TYPE_BIGINT>>>>();
factory.register_function<FunctionMod<ModNumericImpl<PModuloNumericImpl<TYPE_DOUBLE>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMALV2, TYPE_DECIMALV2>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL32, TYPE_DECIMAL32>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL32, TYPE_DECIMAL64>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL32, TYPE_DECIMAL128I>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL32, TYPE_DECIMAL256>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL64, TYPE_DECIMAL32>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL64, TYPE_DECIMAL64>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL64, TYPE_DECIMAL128I>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL64, TYPE_DECIMAL256>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL128I, TYPE_DECIMAL32>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL128I, TYPE_DECIMAL64>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL128I, TYPE_DECIMAL128I>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL128I, TYPE_DECIMAL256>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL256, TYPE_DECIMAL32>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL256, TYPE_DECIMAL64>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL256, TYPE_DECIMAL128I>>>>();
factory.register_function<
FunctionMod<ModDecimalImpl<ModuloDecimalImpl<TYPE_DECIMAL256, TYPE_DECIMAL256>>>>();
factory.register_alias("mod", "fmod");
}
} // namespace doris::vectorized