blob: 2659ec38a82f0e1774d7e0a22e209a34efe0aad8 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <parallel_hashmap/phmap.h>
#include <algorithm>
#include "vec/columns/column.h"
#include "vec/columns/column_string.h"
#include "vec/columns/predicate_column.h"
#include "vec/common/pod_array.h"
#include "vec/common/string_ref.h"
#include "vec/core/types.h"
namespace doris::vectorized {
#include "common/compile_check_begin.h"
/**
* For low cardinality string columns, using ColumnDictionary can reduce memory
* usage and improve query efficiency.
* For equal predicate comparisons, convert the predicate constant to encodings
* according to the dictionary, so that encoding comparisons are used instead
* of string comparisons to improve performance.
* For range comparison predicates, it is necessary to sort the dictionary
* contents, convert the encoding column, and then compare the encoding directly.
* If the read data page contains plain-encoded data pages, the dictionary
* columns are converted into PredicateColumn for processing.
* Currently ColumnDictionary is only used for storage layer.
*/
class ColumnDictI32 final : public COWHelper<IColumn, ColumnDictI32> {
private:
friend class COWHelper<IColumn, ColumnDictI32>;
ColumnDictI32(const ColumnDictI32& src) {
throw doris::Exception(ErrorCode::INTERNAL_ERROR, "copy not supported in ColumnDictionary");
}
ColumnDictI32(FieldType type) : _type(type) {}
public:
using Self = ColumnDictI32;
using value_type = Int32;
using Container = PaddedPODArray<value_type>;
using DictContainer = PaddedPODArray<StringRef>;
using HashValueContainer = PaddedPODArray<uint32_t>; // used for bloom filter
bool is_column_dictionary() const override { return true; }
size_t size() const override { return _codes.size(); }
void insert_from(const IColumn& src, size_t n) override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"insert_from not supported in ColumnDictionary");
}
void insert_range_from(const IColumn& src, size_t start, size_t length) override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"insert_range_from not supported in ColumnDictionary");
}
void insert_indices_from(const IColumn& src, const uint32_t* indices_begin,
const uint32_t* indices_end) override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"insert_indices_from not supported in ColumnDictionary");
}
void insert_default() override { _codes.push_back(_dict.get_null_code()); }
void clear() override {
_codes.clear();
_dict_code_converted = false;
_dict.clear_hash_values();
}
// TODO: Make dict memory usage more precise
size_t byte_size() const override { return _codes.size() * sizeof(_codes[0]); }
size_t allocated_bytes() const override { return byte_size(); }
bool has_enough_capacity(const IColumn& src) const override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"has_enough_capacity not supported in ColumnDictionary");
}
void pop_back(size_t n) override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"pop_back not supported in ColumnDictionary");
}
void reserve(size_t n) override { _codes.reserve(n); }
std::string get_name() const override { return "ColumnDictionary"; }
MutableColumnPtr clone_resized(size_t size) const override {
DCHECK(size == 0);
return create(_type);
}
void insert(const Field& x) override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"insert not supported in ColumnDictionary");
}
Field operator[](size_t n) const override { return Field::create_field<TYPE_INT>(_codes[n]); }
void get(size_t n, Field& res) const override { res = (*this)[n]; }
Container& get_data() { return _codes; }
const Container& get_data() const { return _codes; }
// it's impossible to use ComplexType as key , so we don't have to implement them
[[noreturn]] StringRef serialize_value_into_arena(size_t n, Arena& arena,
char const*& begin) const override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"serialize_value_into_arena not supported in ColumnDictionary");
}
[[noreturn]] const char* deserialize_and_insert_from_arena(const char* pos) override {
throw doris::Exception(
ErrorCode::INTERNAL_ERROR,
"deserialize_and_insert_from_arena not supported in ColumnDictionary");
}
[[noreturn]] ColumnPtr filter(const IColumn::Filter& filt,
ssize_t result_size_hint) const override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"filter not supported in ColumnDictionary");
}
[[noreturn]] size_t filter(const IColumn::Filter&) override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"filter not supported in ColumnDictionary");
}
[[noreturn]] MutableColumnPtr permute(const IColumn::Permutation& perm,
size_t limit) const override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"permute not supported in ColumnDictionary");
}
Status filter_by_selector(const uint16_t* sel, size_t sel_size, IColumn* col_ptr) override {
auto* res_col = assert_cast<vectorized::ColumnString*>(col_ptr);
_strings.resize(sel_size);
size_t length = 0;
for (size_t i = 0; i != sel_size; ++i) {
auto& value = _dict.get_value(_codes[sel[i]]);
_strings[i].data = value.data;
_strings[i].size = value.size;
length += value.size;
}
res_col->get_offsets().reserve(sel_size + res_col->get_offsets().size());
res_col->get_chars().reserve(length + res_col->get_chars().size());
res_col->insert_many_strings_without_reserve(_strings.data(), sel_size);
return Status::OK();
}
void replace_column_data(const IColumn&, size_t row, size_t self_row = 0) override {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"should not call replace_column_data in ColumnDictionary");
}
/**
* Just insert dictionary data items, the items will append into _dict.
*/
void insert_many_dict_data(const StringRef* dict_array, uint32_t dict_num) {
_dict.reserve(_dict.size() + dict_num);
for (uint32_t i = 0; i < dict_num; ++i) {
auto value = StringRef(dict_array[i].data, dict_array[i].size);
_dict.insert_value(value);
}
}
void insert_many_dict_data(const int32_t* data_array, size_t start_index,
const StringRef* dict_array, size_t data_num,
uint32_t dict_num) override {
if (_dict.empty()) {
_dict.reserve(dict_num);
for (uint32_t i = 0; i < dict_num; ++i) {
auto value = StringRef(dict_array[i].data, dict_array[i].size);
_dict.insert_value(value);
}
}
size_t org_size = _codes.size();
char* end_ptr = (char*)_codes.get_end_ptr();
memcpy(end_ptr, data_array + start_index, data_num * sizeof(Int32));
_codes.resize(org_size + data_num);
}
void convert_dict_codes_if_necessary() override {
// Avoid setting `_dict_sorted` to true when `_dict` is empty.
// Because `_dict` maybe keep empty after inserting some null rows.
if (_dict.empty()) {
return;
}
if (!is_dict_sorted()) {
_dict.sort();
_dict_sorted = true;
}
if (!is_dict_code_converted()) {
for (size_t i = 0; i < size(); ++i) {
_codes[i] = _dict.convert_code(_codes[i]);
}
_dict_code_converted = true;
}
}
Int32 find_code(const StringRef& value) const { return _dict.find_code(value); }
Int32 find_code_by_bound(const StringRef& value, bool greater, bool eq) const {
return _dict.find_code_by_bound(value, greater, eq);
}
void initialize_hash_values_for_runtime_filter() override {
_dict.initialize_hash_values_for_runtime_filter();
}
uint32_t get_hash_value(uint32_t idx) const { return _dict.get_hash_value(_codes[idx], _type); }
template <typename HybridSetType>
void find_codes(const HybridSetType* values, std::vector<vectorized::UInt8>& selected) const {
return _dict.find_codes(values, selected);
}
void set_rowset_segment_id(std::pair<RowsetId, uint32_t> rowset_segment_id) override {
_rowset_segment_id = rowset_segment_id;
}
std::pair<RowsetId, uint32_t> get_rowset_segment_id() const override {
return _rowset_segment_id;
}
bool is_dict_sorted() const { return _dict_sorted; }
bool is_dict_empty() const { return _dict.empty(); }
bool is_dict_code_converted() const { return _dict_code_converted; }
MutableColumnPtr convert_to_predicate_column_if_dictionary() override {
if (is_dict_sorted() && !is_dict_code_converted()) {
convert_dict_codes_if_necessary();
}
// if type is OLAP_FIELD_TYPE_CHAR, we need to construct TYPE_CHAR PredicateColumnType,
// because the string length will different from varchar and string which needed to be processed after.
auto create_column = [this]() -> MutableColumnPtr {
if (_type == FieldType::OLAP_FIELD_TYPE_CHAR) {
return vectorized::PredicateColumnType<TYPE_CHAR>::create();
}
return vectorized::PredicateColumnType<TYPE_STRING>::create();
};
auto res = create_column();
res->reserve(_codes.capacity());
for (int code : _codes) {
auto value = _dict.get_value(code);
res->insert_data(value.data, value.size);
}
clear();
_dict.clear();
return res;
}
inline const StringRef& get_value(value_type code) const { return _dict.get_value(code); }
inline StringRef get_shrink_value(value_type code) const {
StringRef result = _dict.get_value(code);
if (_type == FieldType::OLAP_FIELD_TYPE_CHAR) {
result.size = strnlen(result.data, result.size);
}
return result;
}
size_t dict_size() const { return _dict.size(); }
std::string dict_debug_string() const { return _dict.debug_string(); }
class Dictionary {
public:
Dictionary() : _dict_data(new DictContainer()) {}
void reserve(size_t n) { _dict_data->reserve(n); }
void insert_value(const StringRef& value) {
_dict_data->push_back_without_reserve(value);
_total_str_len += value.size;
}
Int32 find_code(const StringRef& value) const {
// _dict_data->size will not exceed the range of T.
for (Int32 i = 0; i < _dict_data->size(); i++) {
if ((*_dict_data)[i] == value) {
return i;
}
}
return -2; // -1 is null code
}
Int32 get_null_code() const { return -1; }
inline StringRef& get_value(Int32 code) { return (*_dict_data)[code]; }
inline const StringRef& get_value(Int32 code) const { return (*_dict_data)[code]; }
// The function is only used in the runtime filter feature
inline void initialize_hash_values_for_runtime_filter() {
if (_hash_values.empty()) {
_hash_values.resize(_dict_data->size());
_compute_hash_value_flags.resize(_dict_data->size());
_compute_hash_value_flags.assign(_dict_data->size(), 0);
}
}
inline uint32_t get_hash_value(Int32 code, FieldType type) const {
if (_compute_hash_value_flags[code]) {
return _hash_values[code];
} else {
auto& sv = (*_dict_data)[code];
// The char data is stored in the disk with the schema length,
// and zeros are filled if the length is insufficient
// When reading data, use shrink_char_type_column_suffix_zero(_char_type_idx)
// Remove the suffix 0
// When writing data, use the CharField::consume function to fill in the trailing 0.
// For dictionary data of char type, sv.size is the schema length,
// so use strnlen to remove the 0 at the end to get the actual length.
size_t len = sv.size;
if (type == FieldType::OLAP_FIELD_TYPE_CHAR) {
len = strnlen(sv.data, sv.size);
}
uint32_t hash_val =
crc32c::Extend(0, (const uint8_t*)sv.data, static_cast<uint32_t>(len));
_hash_values[code] = hash_val;
_compute_hash_value_flags[code] = 1;
return _hash_values[code];
}
}
// For > , code takes upper_bound - 1; For >= , code takes upper_bound
// For < , code takes upper_bound; For <=, code takes upper_bound - 1
// For example a sorted dict: <'b',0> <'c',1> <'d',2>
// Now the predicate value is 'ccc', 'ccc' is not in the dict, 'ccc' is between 'c' and 'd'.
// std::upper_bound(..., 'ccc') - begin, will return the encoding of 'd', which is 2
// If the predicate is col > 'ccc' and the value of upper_bound-1 is 1,
// then evaluate code > 1 and the result is 'd'.
// If the predicate is col < 'ccc' and the value of upper_bound is 2,
// evaluate code < 2, and the return result is 'b'.
// If the predicate is col >= 'ccc' and the value of upper_bound is 2,
// evaluate code >= 2, and the return result is 'd'.
// If the predicate is col <= 'ccc' and the value of upper_bound-1 is 1,
// evaluate code <= 1, and the returned result is 'b'.
// If the predicate is col < 'a', 'a' is also not in the dict, and 'a' is less than 'b',
// so upper_bound is the code 0 of b, then evaluate code < 0 and returns empty
// If the predicate is col <= 'a' and upper_bound-1 is -1,
// then evaluate code <= -1 and returns empty
Int32 find_code_by_bound(const StringRef& value, bool greater, bool eq) const {
auto code = find_code(value);
if (code >= 0) {
return code;
}
auto bound = static_cast<Int32>(
std::upper_bound(_dict_data->begin(), _dict_data->end(), value) -
_dict_data->begin());
return greater ? bound - greater + eq : bound - eq;
}
template <typename HybridSetType>
void find_codes(const HybridSetType* values,
std::vector<vectorized::UInt8>& selected) const {
size_t dict_word_num = _dict_data->size();
selected.resize(dict_word_num);
selected.assign(dict_word_num, false);
for (size_t i = 0; i < _dict_data->size(); i++) {
if (values->find(&((*_dict_data)[i]))) {
selected[i] = true;
}
}
}
void clear() {
_dict_data->clear();
_code_convert_table.clear();
_hash_values.clear();
_compute_hash_value_flags.clear();
}
void clear_hash_values() {
_hash_values.clear();
_compute_hash_value_flags.clear();
}
void sort() {
size_t dict_size = _dict_data->size();
_code_convert_table.resize(dict_size);
_perm.resize(dict_size);
for (size_t i = 0; i < dict_size; ++i) {
_perm[i] = i;
}
std::ranges::sort(_perm, [&dict_data = *_dict_data, &comparator = _comparator](
const size_t a, const size_t b) {
return comparator(dict_data[a], dict_data[b]);
});
auto* new_dict_data = new DictContainer(dict_size);
for (size_t i = 0; i < dict_size; ++i) {
_code_convert_table[_perm[i]] = (Int32)i;
(*new_dict_data)[i] = (*_dict_data)[_perm[i]];
}
_dict_data.reset(new_dict_data);
}
Int32 convert_code(const Int32& code) const {
if (get_null_code() == code) {
return code;
}
return _code_convert_table[code];
}
size_t byte_size() { return _dict_data->size() * sizeof((*_dict_data)[0]); }
bool empty() const { return _dict_data->empty(); }
size_t avg_str_len() { return empty() ? 0 : _total_str_len / _dict_data->size(); }
size_t size() const {
if (!_dict_data) {
return 0;
}
return _dict_data->size();
}
std::string debug_string() const {
std::string str = "[";
if (_dict_data) {
for (size_t i = 0; i < _dict_data->size(); i++) {
if (i) {
str += ',';
}
str += (*_dict_data)[i].to_string();
}
}
str += ']';
return str;
}
private:
StringRef::Comparator _comparator;
// dict code -> dict value
std::unique_ptr<DictContainer> _dict_data;
std::vector<Int32> _code_convert_table;
// hash value of origin string , used for bloom filter
// It's a trade-off of space for performance
// But in TPC-DS 1GB q60,we see no significant improvement.
// This may because the magnitude of the data is not large enough(in q60, only about 80k rows data is filtered for largest table)
// So we may need more test here.
mutable HashValueContainer _hash_values;
mutable std::vector<uint8_t> _compute_hash_value_flags;
IColumn::Permutation _perm;
size_t _total_str_len = 0;
};
size_t serialize_size_at(size_t row) const override { return sizeof(value_type); }
private:
size_t _reserve_size;
bool _dict_sorted = false;
bool _dict_code_converted = false;
Dictionary _dict;
Container _codes;
FieldType _type;
std::pair<RowsetId, uint32_t> _rowset_segment_id;
std::vector<StringRef> _strings;
};
} // namespace doris::vectorized
#include "common/compile_check_end.h"