| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| // This file is copied from |
| // https://github.com/apache/impala/blob/branch-2.9.0/be/src/util/bit-util.h |
| // and modified by Doris |
| |
| #pragma once |
| |
| #include <type_traits> |
| |
| #include "vec/core/extended_types.h" |
| #ifndef __APPLE__ |
| #include <endian.h> |
| #endif |
| |
| #include "common/compiler_util.h" // IWYU pragma: keep |
| #include "util/cpu_info.h" |
| #include "util/sse_util.hpp" |
| |
| namespace doris { |
| |
| // Utility class to do standard bit tricks |
| // TODO: is this in boost or something else like that? |
| class BitUtil { |
| public: |
| // Returns the ceil of value/divisor |
| static inline int64_t ceil(int64_t value, int64_t divisor) { |
| return value / divisor + (value % divisor != 0); |
| } |
| |
| // Returns 'value' rounded up to the nearest multiple of 'factor' |
| static inline int64_t round_up(int64_t value, int64_t factor) { |
| return (value + (factor - 1)) / factor * factor; |
| } |
| |
| // Returns the smallest power of two that contains v. Taken from |
| // http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
| // TODO: Pick a better name, as it is not clear what happens when the input is |
| // already a power of two. |
| static inline int64_t next_power_of_two(int64_t v) { |
| --v; |
| v |= v >> 1; |
| v |= v >> 2; |
| v |= v >> 4; |
| v |= v >> 8; |
| v |= v >> 16; |
| v |= v >> 32; |
| ++v; |
| return v; |
| } |
| |
| // Non hw accelerated pop count. |
| // TODO: we don't use this in any perf sensitive code paths currently. There |
| // might be a much faster way to implement this. |
| static inline int popcount_no_hw(uint64_t x) { |
| int count = 0; |
| |
| for (; x != 0; ++count) { |
| x &= x - 1; |
| } |
| |
| return count; |
| } |
| |
| // Returns the number of set bits in x |
| static inline int popcount(uint64_t x) { |
| if (LIKELY(CpuInfo::is_supported(CpuInfo::POPCNT))) { |
| return __builtin_popcountl(x); |
| } else { |
| return popcount_no_hw(x); |
| } |
| } |
| |
| // Returns the 'num_bits' least-significant bits of 'v'. |
| static inline uint64_t trailing_bits(uint64_t v, int num_bits) { |
| if (UNLIKELY(num_bits == 0)) { |
| return 0; |
| } |
| |
| if (UNLIKELY(num_bits >= 64)) { |
| return v; |
| } |
| |
| int n = 64 - num_bits; |
| return (v << n) >> n; |
| } |
| |
| template <typename T> |
| static std::string IntToByteBuffer(T input) { |
| std::string buffer; |
| T value = input; |
| for (int i = 0; i < sizeof(value); ++i) { |
| // Applies a mask for a byte range on the input. |
| signed char value_to_save = value & 0XFF; |
| buffer.push_back(value_to_save); |
| // Remove the just processed part from the input so that we can exit early if there |
| // is nothing left to process. |
| value >>= 8; |
| if (value == 0 && value_to_save >= 0) { |
| break; |
| } |
| if (value == -1 && value_to_save < 0) { |
| break; |
| } |
| } |
| std::reverse(buffer.begin(), buffer.end()); |
| return buffer; |
| } |
| |
| // Returns ceil(log2(x)). |
| // TODO: this could be faster if we use __builtin_clz. Fix this if this ever shows up |
| // in a hot path. |
| static inline int log2(uint64_t x) { |
| DCHECK_GT(x, 0); |
| |
| if (x == 1) { |
| return 0; |
| } |
| |
| // Compute result = ceil(log2(x)) |
| // = floor(log2(x - 1)) + 1, for x > 1 |
| // by finding the position of the most significant bit (1-indexed) of x - 1 |
| // (floor(log2(n)) = MSB(n) (0-indexed)) |
| --x; |
| int result = 1; |
| |
| while (x >>= 1) { |
| ++result; |
| } |
| |
| return result; |
| } |
| |
| // Returns the rounded up to 64 multiple. Used for conversions of bits to i64. |
| static inline uint32_t round_up_numi64(uint32_t bits) { return (bits + 63) >> 6; } |
| |
| // Returns the rounded up to 32 multiple. Used for conversions of bits to i32. |
| constexpr static inline uint32_t round_up_numi32(uint32_t bits) { return (bits + 31) >> 5; } |
| |
| /// Returns the smallest power of two that contains v. If v is a power of two, v is |
| /// returned. Taken from |
| /// http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
| static inline int64_t RoundUpToPowerOfTwo(int64_t v) { |
| --v; |
| v |= v >> 1; |
| v |= v >> 2; |
| v |= v >> 4; |
| v |= v >> 8; |
| v |= v >> 16; |
| v |= v >> 32; |
| ++v; |
| return v; |
| } |
| |
| // Wrap the gutil/ version for convenience. |
| static inline int Log2FloorNonZero64(uint64_t n) { return 63 ^ __builtin_clzll(n); } |
| |
| // Wrap the gutil/ version for convenience. |
| static inline int Log2Floor64(uint64_t n) { return n == 0 ? -1 : 63 ^ __builtin_clzll(n); } |
| |
| static inline int Log2Ceiling64(uint64_t n) { |
| int floor = Log2Floor64(n); |
| // Check if zero or a power of two. This pattern is recognised by gcc and optimised |
| // into branch-free code. |
| if (0 == (n & (n - 1))) { |
| return floor; |
| } else { |
| return floor + 1; |
| } |
| } |
| |
| static inline int Log2CeilingNonZero64(uint64_t n) { |
| int floor = Log2FloorNonZero64(n); |
| // Check if zero or a power of two. This pattern is recognised by gcc and optimised |
| // into branch-free code. |
| if (0 == (n & (n - 1))) { |
| return floor; |
| } else { |
| return floor + 1; |
| } |
| } |
| |
| // Returns the rounded up to 64 multiple. Used for conversions of bits to i64. |
| static inline uint32_t round_up_numi_64(uint32_t bits) { return (bits + 63) >> 6; } |
| |
| constexpr static inline int64_t Ceil(int64_t value, int64_t divisor) { |
| return value / divisor + (value % divisor != 0); |
| } |
| |
| constexpr static inline bool IsPowerOf2(int64_t value) { return (value & (value - 1)) == 0; } |
| |
| constexpr static inline int64_t RoundDown(int64_t value, int64_t factor) { |
| return (value / factor) * factor; |
| } |
| |
| /// Specialized round up and down functions for frequently used factors, |
| /// like 8 (bits->bytes), 32 (bits->i32), and 64 (bits->i64) |
| /// Returns the rounded up number of bytes that fit the number of bits. |
| constexpr static inline uint32_t RoundUpNumBytes(uint32_t bits) { return (bits + 7) >> 3; } |
| |
| template <typename T> |
| static inline T RoundDownToPowerOf2(T value, T factor) { |
| static_assert(std::is_integral<T>::value, "T must be an integral type"); |
| DCHECK((factor > 0) && ((factor & (factor - 1)) == 0)); |
| return value & ~(factor - 1); |
| } |
| |
| // Returns the ceil of value/divisor |
| static inline int Ceil(int value, int divisor) { |
| return value / divisor + (value % divisor != 0); |
| } |
| |
| // Returns the 'num_bits' least-significant bits of 'v'. |
| static inline uint64_t TrailingBits(uint64_t v, int num_bits) { |
| if (num_bits == 0) [[unlikely]] { |
| return 0; |
| } |
| if (num_bits >= 64) [[unlikely]] { |
| return v; |
| } |
| int n = 64 - num_bits; |
| return (v << n) >> n; |
| } |
| |
| static inline uint64_t ShiftLeftZeroOnOverflow(uint64_t v, int num_bits) { |
| if (num_bits >= 64) [[unlikely]] { |
| return 0; |
| } |
| return v << num_bits; |
| } |
| |
| static inline uint64_t ShiftRightZeroOnOverflow(uint64_t v, int num_bits) { |
| if (num_bits >= 64) [[unlikely]] { |
| return 0; |
| } |
| return v >> num_bits; |
| } |
| }; |
| |
| } // namespace doris |