blob: a8deae68834b30a450e837fff43880b35058b524 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "runtime/routine_load/data_consumer_group.h"
#include <gen_cpp/PlanNodes_types.h>
#include <stddef.h>
#include <map>
#include <ostream>
#include <string>
#include <utility>
#include "common/logging.h"
#include "librdkafka/rdkafkacpp.h"
#include "runtime/routine_load/data_consumer.h"
#include "runtime/stream_load/stream_load_context.h"
#include "util/stopwatch.hpp"
namespace doris {
#include "common/compile_check_begin.h"
Status KafkaDataConsumerGroup::assign_topic_partitions(std::shared_ptr<StreamLoadContext> ctx) {
DCHECK(ctx->kafka_info);
DCHECK(_consumers.size() >= 1);
// divide partitions
int consumer_size = doris::cast_set<int>(_consumers.size());
std::vector<std::map<int32_t, int64_t>> divide_parts(consumer_size);
int i = 0;
for (auto& kv : ctx->kafka_info->begin_offset) {
int idx = i % consumer_size;
divide_parts[idx].emplace(kv.first, kv.second);
i++;
}
// assign partitions to consumers equally
for (int j = 0; j < consumer_size; ++j) {
RETURN_IF_ERROR(
std::static_pointer_cast<KafkaDataConsumer>(_consumers[j])
->assign_topic_partitions(divide_parts[j], ctx->kafka_info->topic, ctx));
}
return Status::OK();
}
KafkaDataConsumerGroup::~KafkaDataConsumerGroup() {
// clean the msgs left in queue
_queue.shutdown();
while (true) {
RdKafka::Message* msg;
if (_queue.blocking_get(&msg)) {
delete msg;
msg = nullptr;
} else {
break;
}
}
DCHECK(_queue.get_size() == 0);
}
Status KafkaDataConsumerGroup::start_all(std::shared_ptr<StreamLoadContext> ctx,
std::shared_ptr<io::KafkaConsumerPipe> kafka_pipe) {
Status result_st = Status::OK();
// start all consumers
for (auto& consumer : _consumers) {
if (!_thread_pool.offer(std::bind<void>(
&KafkaDataConsumerGroup::actual_consume, this, consumer, &_queue,
ctx->max_interval_s * 1000, [this, &result_st](const Status& st) {
std::unique_lock<std::mutex> lock(_mutex);
_counter--;
VLOG_CRITICAL << "group counter is: " << _counter << ", grp: " << _grp_id;
if (_counter == 0) {
_queue.shutdown();
LOG(INFO) << "all consumers are finished. shutdown queue. group id: "
<< _grp_id;
}
if (result_st.ok() && !st.ok()) {
result_st = st;
}
}))) {
LOG(WARNING) << "failed to submit data consumer: " << consumer->id()
<< ", group id: " << _grp_id;
return Status::InternalError("failed to submit data consumer");
} else {
VLOG_CRITICAL << "submit a data consumer: " << consumer->id()
<< ", group id: " << _grp_id;
}
}
// consuming from queue and put data to stream load pipe
int64_t left_time = ctx->max_interval_s * 1000;
int64_t left_rows = ctx->max_batch_rows;
int64_t left_bytes = ctx->max_batch_size;
LOG(INFO) << "start consumer group: " << _grp_id << ". max time(ms): " << left_time
<< ", batch rows: " << left_rows << ", batch size: " << left_bytes << ". "
<< ctx->brief();
// copy one
std::map<int32_t, int64_t> cmt_offset = ctx->kafka_info->cmt_offset;
//improve performance
Status (io::KafkaConsumerPipe::*append_data)(const char* data, size_t size);
if (ctx->format == TFileFormatType::FORMAT_JSON) {
append_data = &io::KafkaConsumerPipe::append_json;
} else {
append_data = &io::KafkaConsumerPipe::append_with_line_delimiter;
}
MonotonicStopWatch watch;
watch.start();
bool eos = false;
while (true) {
if (eos || left_time <= 0 || left_rows <= 0 || left_bytes <= 0) {
LOG(INFO) << "consumer group done: " << _grp_id
<< ". consume time(ms)=" << ctx->max_interval_s * 1000 - left_time
<< ", received rows=" << ctx->max_batch_rows - left_rows
<< ", received bytes=" << ctx->max_batch_size - left_bytes << ", eos: " << eos
<< ", left_time: " << left_time << ", left_rows: " << left_rows
<< ", left_bytes: " << left_bytes
<< ", blocking get time(us): " << _queue.total_get_wait_time() / 1000
<< ", blocking put time(us): " << _queue.total_put_wait_time() / 1000 << ", "
<< ctx->brief();
// shutdown queue
_queue.shutdown();
// cancel all consumers
for (auto& consumer : _consumers) {
static_cast<void>(consumer->cancel(ctx));
}
// waiting all threads finished
_thread_pool.shutdown();
_thread_pool.join();
if (!result_st.ok()) {
kafka_pipe->cancel(result_st.to_string());
return result_st;
}
static_cast<void>(kafka_pipe->finish());
ctx->kafka_info->cmt_offset = std::move(cmt_offset);
ctx->receive_bytes = ctx->max_batch_size - left_bytes;
return Status::OK();
}
RdKafka::Message* msg;
bool res = _queue.controlled_blocking_get(&msg, config::blocking_queue_cv_wait_timeout_ms);
if (res) {
// conf has to be deleted finally
Defer delete_msg {[msg]() { delete msg; }};
VLOG_NOTICE << "get kafka message"
<< ", partition: " << msg->partition() << ", offset: " << msg->offset()
<< ", len: " << msg->len();
if (msg->err() == RdKafka::ERR__PARTITION_EOF) {
if (msg->offset() > 0) {
cmt_offset[msg->partition()] = msg->offset() - 1;
}
} else {
Status st = (kafka_pipe.get()->*append_data)(
static_cast<const char*>(msg->payload()), static_cast<size_t>(msg->len()));
if (st.ok()) {
left_rows--;
left_bytes -= msg->len();
cmt_offset[msg->partition()] = msg->offset();
VLOG_NOTICE << "consume partition[" << msg->partition() << " - "
<< msg->offset() << "]";
} else {
// failed to append this msg, we must stop
LOG(WARNING) << "failed to append msg to pipe. grp: " << _grp_id;
eos = true;
{
std::unique_lock<std::mutex> lock(_mutex);
if (result_st.ok()) {
result_st = st;
}
}
}
}
} else {
// queue is empty and shutdown
eos = true;
}
left_time = ctx->max_interval_s * 1000 - watch.elapsed_time() / 1000 / 1000;
}
return Status::OK();
}
void KafkaDataConsumerGroup::actual_consume(std::shared_ptr<DataConsumer> consumer,
BlockingQueue<RdKafka::Message*>* queue,
int64_t max_running_time_ms, ConsumeFinishCallback cb) {
Status st = std::static_pointer_cast<KafkaDataConsumer>(consumer)->group_consume(
queue, max_running_time_ms);
cb(st);
}
#include "common/compile_check_end.h"
} // namespace doris