blob: 3a8638402a8a891c3540819ec63886a8fe527172 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "streaming_aggregation_operator.h"
#include <gen_cpp/Metrics_types.h>
#include <memory>
#include <utility>
#include "common/cast_set.h"
#include "common/compiler_util.h" // IWYU pragma: keep
#include "pipeline/exec/operator.h"
#include "vec/aggregate_functions/aggregate_function_simple_factory.h"
#include "vec/exprs/vectorized_agg_fn.h"
#include "vec/exprs/vslot_ref.h"
namespace doris {
#include "common/compile_check_begin.h"
class RuntimeState;
} // namespace doris
namespace doris::pipeline {
/// The minimum reduction factor (input rows divided by output rows) to grow hash tables
/// in a streaming preaggregation, given that the hash tables are currently the given
/// size or above. The sizes roughly correspond to hash table sizes where the bucket
/// arrays will fit in a cache level. Intuitively, we don't want the working set of the
/// aggregation to expand to the next level of cache unless we're reducing the input
/// enough to outweigh the increased memory latency we'll incur for each hash table
/// lookup.
///
/// Note that the current reduction achieved is not always a good estimate of the
/// final reduction. It may be biased either way depending on the ordering of the
/// input. If the input order is random, we will underestimate the final reduction
/// factor because the probability of a row having the same key as a previous row
/// increases as more input is processed. If the input order is correlated with the
/// key, skew may bias the estimate. If high cardinality keys appear first, we
/// may overestimate and if low cardinality keys appear first, we underestimate.
/// To estimate the eventual reduction achieved, we estimate the final reduction
/// using the planner's estimated input cardinality and the assumption that input
/// is in a random order. This means that we assume that the reduction factor will
/// increase over time.
struct StreamingHtMinReductionEntry {
// Use 'streaming_ht_min_reduction' if the total size of hash table bucket directories in
// bytes is greater than this threshold.
int min_ht_mem;
// The minimum reduction factor to expand the hash tables.
double streaming_ht_min_reduction;
};
// TODO: experimentally tune these values and also programmatically get the cache size
// of the machine that we're running on.
static constexpr StreamingHtMinReductionEntry STREAMING_HT_MIN_REDUCTION[] = {
// Expand up to L2 cache always.
{0, 0.0},
// Expand into L3 cache if we look like we're getting some reduction.
// At present, The L2 cache is generally 1024k or more
{1024 * 1024, 1.1},
// Expand into main memory if we're getting a significant reduction.
// The L3 cache is generally 16MB or more
{16 * 1024 * 1024, 2.0},
};
static constexpr int STREAMING_HT_MIN_REDUCTION_SIZE =
sizeof(STREAMING_HT_MIN_REDUCTION) / sizeof(STREAMING_HT_MIN_REDUCTION[0]);
StreamingAggLocalState::StreamingAggLocalState(RuntimeState* state, OperatorXBase* parent)
: Base(state, parent),
_agg_data(std::make_unique<AggregatedDataVariants>()),
_agg_profile_arena(std::make_unique<vectorized::Arena>()),
_child_block(vectorized::Block::create_unique()),
_pre_aggregated_block(vectorized::Block::create_unique()) {}
Status StreamingAggLocalState::init(RuntimeState* state, LocalStateInfo& info) {
RETURN_IF_ERROR(Base::init(state, info));
SCOPED_TIMER(Base::exec_time_counter());
SCOPED_TIMER(Base::_init_timer);
_hash_table_memory_usage =
ADD_COUNTER_WITH_LEVEL(Base::custom_profile(), "MemoryUsageHashTable", TUnit::BYTES, 1);
_serialize_key_arena_memory_usage = Base::custom_profile()->AddHighWaterMarkCounter(
"MemoryUsageSerializeKeyArena", TUnit::BYTES, "", 1);
_build_timer = ADD_TIMER(Base::custom_profile(), "BuildTime");
_merge_timer = ADD_TIMER(Base::custom_profile(), "MergeTime");
_expr_timer = ADD_TIMER(Base::custom_profile(), "ExprTime");
_insert_values_to_column_timer = ADD_TIMER(Base::custom_profile(), "InsertValuesToColumnTime");
_deserialize_data_timer = ADD_TIMER(Base::custom_profile(), "DeserializeAndMergeTime");
_hash_table_compute_timer = ADD_TIMER(Base::custom_profile(), "HashTableComputeTime");
_hash_table_emplace_timer = ADD_TIMER(Base::custom_profile(), "HashTableEmplaceTime");
_hash_table_input_counter =
ADD_COUNTER(Base::custom_profile(), "HashTableInputCount", TUnit::UNIT);
_hash_table_size_counter = ADD_COUNTER(custom_profile(), "HashTableSize", TUnit::UNIT);
_streaming_agg_timer = ADD_TIMER(custom_profile(), "StreamingAggTime");
_build_timer = ADD_TIMER(custom_profile(), "BuildTime");
_expr_timer = ADD_TIMER(Base::custom_profile(), "ExprTime");
_get_results_timer = ADD_TIMER(custom_profile(), "GetResultsTime");
_hash_table_iterate_timer = ADD_TIMER(custom_profile(), "HashTableIterateTime");
_insert_keys_to_column_timer = ADD_TIMER(custom_profile(), "InsertKeysToColumnTime");
return Status::OK();
}
Status StreamingAggLocalState::open(RuntimeState* state) {
SCOPED_TIMER(Base::exec_time_counter());
SCOPED_TIMER(Base::_open_timer);
RETURN_IF_ERROR(Base::open(state));
auto& p = Base::_parent->template cast<StreamingAggOperatorX>();
for (auto& evaluator : p._aggregate_evaluators) {
_aggregate_evaluators.push_back(evaluator->clone(state, p._pool));
}
_probe_expr_ctxs.resize(p._probe_expr_ctxs.size());
for (size_t i = 0; i < _probe_expr_ctxs.size(); i++) {
RETURN_IF_ERROR(p._probe_expr_ctxs[i]->clone(state, _probe_expr_ctxs[i]));
}
for (auto& evaluator : _aggregate_evaluators) {
evaluator->set_timer(_merge_timer, _expr_timer);
}
DCHECK(!_probe_expr_ctxs.empty());
RETURN_IF_ERROR(_init_hash_method(_probe_expr_ctxs));
std::visit(vectorized::Overload {
[&](std::monostate& arg) -> void {
throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table");
},
[&](auto& agg_method) {
using HashTableType = std::decay_t<decltype(agg_method)>;
using KeyType = typename HashTableType::Key;
/// some aggregate functions (like AVG for decimal) have align issues.
_aggregate_data_container = std::make_unique<AggregateDataContainer>(
sizeof(KeyType), ((p._total_size_of_aggregate_states +
p._align_aggregate_states - 1) /
p._align_aggregate_states) *
p._align_aggregate_states);
}},
_agg_data->method_variant);
if (p._is_merge || p._needs_finalize) {
return Status::InvalidArgument(
"StreamingAggLocalState only support no merge and no finalize, "
"but got is_merge={}, needs_finalize={}",
p._is_merge, p._needs_finalize);
}
_should_limit_output = p._limit != -1 && // has limit
(!p._have_conjuncts) && // no having conjunct
p._needs_finalize; // agg's finalize step
return Status::OK();
}
size_t StreamingAggLocalState::_get_hash_table_size() {
return std::visit(
vectorized::Overload {[&](std::monostate& arg) -> size_t {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"uninited hash table");
return 0;
},
[&](auto& agg_method) { return agg_method.hash_table->size(); }},
_agg_data->method_variant);
}
void StreamingAggLocalState::_update_memusage_with_serialized_key() {
std::visit(vectorized::Overload {
[&](std::monostate& arg) -> void {
throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table");
},
[&](auto& agg_method) -> void {
auto& data = *agg_method.hash_table;
int64_t arena_memory_usage = _agg_arena_pool.size() +
_aggregate_data_container->memory_usage();
int64_t hash_table_memory_usage = data.get_buffer_size_in_bytes();
COUNTER_SET(_memory_used_counter,
arena_memory_usage + hash_table_memory_usage);
COUNTER_SET(_serialize_key_arena_memory_usage, arena_memory_usage);
COUNTER_SET(_hash_table_memory_usage, hash_table_memory_usage);
}},
_agg_data->method_variant);
}
Status StreamingAggLocalState::_init_hash_method(const vectorized::VExprContextSPtrs& probe_exprs) {
RETURN_IF_ERROR(init_hash_method<AggregatedDataVariants>(
_agg_data.get(), get_data_types(probe_exprs),
Base::_parent->template cast<StreamingAggOperatorX>()._is_first_phase));
return Status::OK();
}
Status StreamingAggLocalState::do_pre_agg(RuntimeState* state, vectorized::Block* input_block,
vectorized::Block* output_block) {
if (low_memory_mode()) {
auto& p = Base::_parent->template cast<StreamingAggOperatorX>();
p.set_low_memory_mode(state);
}
RETURN_IF_ERROR(_pre_agg_with_serialized_key(input_block, output_block));
// pre stream agg need use _num_row_return to decide whether to do pre stream agg
_cur_num_rows_returned += output_block->rows();
make_nullable_output_key(output_block);
_update_memusage_with_serialized_key();
return Status::OK();
}
bool StreamingAggLocalState::_should_expand_preagg_hash_tables() {
if (!_should_expand_hash_table) {
return false;
}
return std::visit(
vectorized::Overload {
[&](std::monostate& arg) -> bool {
throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table");
return false;
},
[&](auto& agg_method) -> bool {
auto& hash_tbl = *agg_method.hash_table;
auto [ht_mem, ht_rows] =
std::pair {hash_tbl.get_buffer_size_in_bytes(), hash_tbl.size()};
// Need some rows in tables to have valid statistics.
if (ht_rows == 0) {
return true;
}
// Find the appropriate reduction factor in our table for the current hash table sizes.
int cache_level = 0;
while (cache_level + 1 < STREAMING_HT_MIN_REDUCTION_SIZE &&
ht_mem >= STREAMING_HT_MIN_REDUCTION[cache_level + 1].min_ht_mem) {
++cache_level;
}
// Compare the number of rows in the hash table with the number of input rows that
// were aggregated into it. Exclude passed through rows from this calculation since
// they were not in hash tables.
const int64_t input_rows = _input_num_rows;
const int64_t aggregated_input_rows = input_rows - _cur_num_rows_returned;
// TODO chenhao
// const int64_t expected_input_rows = estimated_input_cardinality_ - num_rows_returned_;
double current_reduction = static_cast<double>(aggregated_input_rows) /
static_cast<double>(ht_rows);
// TODO: workaround for IMPALA-2490: subplan node rows_returned counter may be
// inaccurate, which could lead to a divide by zero below.
if (aggregated_input_rows <= 0) {
return true;
}
// Extrapolate the current reduction factor (r) using the formula
// R = 1 + (N / n) * (r - 1), where R is the reduction factor over the full input data
// set, N is the number of input rows, excluding passed-through rows, and n is the
// number of rows inserted or merged into the hash tables. This is a very rough
// approximation but is good enough to be useful.
// TODO: consider collecting more statistics to better estimate reduction.
// double estimated_reduction = aggregated_input_rows >= expected_input_rows
// ? current_reduction
// : 1 + (expected_input_rows / aggregated_input_rows) * (current_reduction - 1);
double min_reduction =
STREAMING_HT_MIN_REDUCTION[cache_level].streaming_ht_min_reduction;
// COUNTER_SET(preagg_estimated_reduction_, estimated_reduction);
// COUNTER_SET(preagg_streaming_ht_min_reduction_, min_reduction);
// return estimated_reduction > min_reduction;
_should_expand_hash_table = current_reduction > min_reduction;
return _should_expand_hash_table;
}},
_agg_data->method_variant);
}
size_t StreamingAggLocalState::_memory_usage() const {
size_t usage = 0;
usage += _agg_arena_pool.size();
if (_aggregate_data_container) {
usage += _aggregate_data_container->memory_usage();
}
std::visit(vectorized::Overload {[&](std::monostate& arg) -> void {
throw doris::Exception(ErrorCode::INTERNAL_ERROR,
"uninited hash table");
},
[&](auto& agg_method) {
usage += agg_method.hash_table->get_buffer_size_in_bytes();
}},
_agg_data->method_variant);
return usage;
}
bool StreamingAggLocalState::_should_not_do_pre_agg(size_t rows) {
// Stop expanding hash tables if we're not reducing the input sufficiently. As our
// hash tables expand out of each level of cache hierarchy, every hash table lookup
// will take longer. We also may not be able to expand hash tables because of memory
// pressure. In either case we should always use the remaining space in the hash table
// to avoid wasting memory.
// But for fixed hash map, it never need to expand
auto& p = Base::_parent->template cast<StreamingAggOperatorX>();
bool ret_flag = false;
const auto spill_streaming_agg_mem_limit = p._spill_streaming_agg_mem_limit;
const bool used_too_much_memory =
spill_streaming_agg_mem_limit > 0 && _memory_usage() > spill_streaming_agg_mem_limit;
std::visit(
vectorized::Overload {
[&](std::monostate& arg) {
throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table");
},
[&](auto& agg_method) {
auto& hash_tbl = *agg_method.hash_table;
/// If too much memory is used during the pre-aggregation stage,
/// it is better to output the data directly without performing further aggregation.
// do not try to do agg, just init and serialize directly return the out_block
if (used_too_much_memory || (hash_tbl.add_elem_size_overflow(rows) &&
!_should_expand_preagg_hash_tables())) {
SCOPED_TIMER(_streaming_agg_timer);
ret_flag = true;
}
}},
_agg_data->method_variant);
return ret_flag;
}
Status StreamingAggLocalState::_pre_agg_with_serialized_key(doris::vectorized::Block* in_block,
doris::vectorized::Block* out_block) {
SCOPED_TIMER(_build_timer);
DCHECK(!_probe_expr_ctxs.empty());
auto& p = Base::_parent->template cast<StreamingAggOperatorX>();
size_t key_size = _probe_expr_ctxs.size();
vectorized::ColumnRawPtrs key_columns(key_size);
{
SCOPED_TIMER(_expr_timer);
for (size_t i = 0; i < key_size; ++i) {
int result_column_id = -1;
RETURN_IF_ERROR(_probe_expr_ctxs[i]->execute(in_block, &result_column_id));
in_block->get_by_position(result_column_id).column =
in_block->get_by_position(result_column_id)
.column->convert_to_full_column_if_const();
key_columns[i] = in_block->get_by_position(result_column_id).column.get();
key_columns[i]->assume_mutable()->replace_float_special_values();
}
}
uint32_t rows = (uint32_t)in_block->rows();
_places.resize(rows);
if (_should_not_do_pre_agg(rows)) {
bool mem_reuse = p._make_nullable_keys.empty() && out_block->mem_reuse();
std::vector<vectorized::DataTypePtr> data_types;
vectorized::MutableColumns value_columns;
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
auto data_type = _aggregate_evaluators[i]->function()->get_serialized_type();
if (mem_reuse) {
value_columns.emplace_back(
std::move(*out_block->get_by_position(i + key_size).column).mutate());
} else {
value_columns.emplace_back(
_aggregate_evaluators[i]->function()->create_serialize_column());
}
data_types.emplace_back(data_type);
}
for (int i = 0; i != _aggregate_evaluators.size(); ++i) {
SCOPED_TIMER(_insert_values_to_column_timer);
RETURN_IF_ERROR(_aggregate_evaluators[i]->streaming_agg_serialize_to_column(
in_block, value_columns[i], rows, _agg_arena_pool));
}
if (!mem_reuse) {
vectorized::ColumnsWithTypeAndName columns_with_schema;
for (int i = 0; i < key_size; ++i) {
columns_with_schema.emplace_back(key_columns[i]->clone_resized(rows),
_probe_expr_ctxs[i]->root()->data_type(),
_probe_expr_ctxs[i]->root()->expr_name());
}
for (int i = 0; i < value_columns.size(); ++i) {
columns_with_schema.emplace_back(std::move(value_columns[i]), data_types[i], "");
}
out_block->swap(vectorized::Block(columns_with_schema));
} else {
for (int i = 0; i < key_size; ++i) {
std::move(*out_block->get_by_position(i).column)
.mutate()
->insert_range_from(*key_columns[i], 0, rows);
}
}
} else {
_emplace_into_hash_table(_places.data(), key_columns, rows);
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
RETURN_IF_ERROR(_aggregate_evaluators[i]->execute_batch_add(
in_block, p._offsets_of_aggregate_states[i], _places.data(), _agg_arena_pool,
_should_expand_hash_table));
}
}
return Status::OK();
}
Status StreamingAggLocalState::_create_agg_status(vectorized::AggregateDataPtr data) {
auto& p = Base::_parent->template cast<StreamingAggOperatorX>();
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
try {
_aggregate_evaluators[i]->create(data + p._offsets_of_aggregate_states[i]);
} catch (...) {
for (int j = 0; j < i; ++j) {
_aggregate_evaluators[j]->destroy(data + p._offsets_of_aggregate_states[j]);
}
throw;
}
}
return Status::OK();
}
Status StreamingAggLocalState::_get_results_with_serialized_key(RuntimeState* state,
vectorized::Block* block,
bool* eos) {
SCOPED_TIMER(_get_results_timer);
auto& p = _parent->cast<StreamingAggOperatorX>();
const auto key_size = _probe_expr_ctxs.size();
const auto agg_size = _aggregate_evaluators.size();
vectorized::MutableColumns value_columns(agg_size);
vectorized::DataTypes value_data_types(agg_size);
// non-nullable column(id in `_make_nullable_keys`) will be converted to nullable.
bool mem_reuse = p._make_nullable_keys.empty() && block->mem_reuse();
vectorized::MutableColumns key_columns;
for (int i = 0; i < key_size; ++i) {
if (mem_reuse) {
key_columns.emplace_back(std::move(*block->get_by_position(i).column).mutate());
} else {
key_columns.emplace_back(_probe_expr_ctxs[i]->root()->data_type()->create_column());
}
}
std::visit(
vectorized::Overload {
[&](std::monostate& arg) -> void {
throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table");
},
[&](auto& agg_method) -> void {
agg_method.init_iterator();
auto& data = *agg_method.hash_table;
const auto size = std::min(data.size(), size_t(state->batch_size()));
using KeyType = std::decay_t<decltype(agg_method)>::Key;
std::vector<KeyType> keys(size);
if (_values.size() < size + 1) {
_values.resize(size + 1);
}
uint32_t num_rows = 0;
_aggregate_data_container->init_once();
auto& iter = _aggregate_data_container->iterator;
{
SCOPED_TIMER(_hash_table_iterate_timer);
while (iter != _aggregate_data_container->end() &&
num_rows < state->batch_size()) {
keys[num_rows] = iter.template get_key<KeyType>();
_values[num_rows] = iter.get_aggregate_data();
++iter;
++num_rows;
}
}
{
SCOPED_TIMER(_insert_keys_to_column_timer);
agg_method.insert_keys_into_columns(keys, key_columns, num_rows);
}
if (iter == _aggregate_data_container->end()) {
if (agg_method.hash_table->has_null_key_data()) {
// only one key of group by support wrap null key
// here need additional processing logic on the null key / value
DCHECK(key_columns.size() == 1);
DCHECK(key_columns[0]->is_nullable());
if (agg_method.hash_table->has_null_key_data()) {
key_columns[0]->insert_data(nullptr, 0);
_values[num_rows] =
agg_method.hash_table->template get_null_key_data<
vectorized::AggregateDataPtr>();
++num_rows;
*eos = true;
}
} else {
*eos = true;
}
}
{
SCOPED_TIMER(_insert_values_to_column_timer);
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i) {
value_data_types[i] =
_aggregate_evaluators[i]->function()->get_serialized_type();
if (mem_reuse) {
value_columns[i] =
std::move(*block->get_by_position(i + key_size).column)
.mutate();
} else {
value_columns[i] = _aggregate_evaluators[i]
->function()
->create_serialize_column();
}
_aggregate_evaluators[i]->function()->serialize_to_column(
_values, p._offsets_of_aggregate_states[i],
value_columns[i], num_rows);
}
}
}},
_agg_data->method_variant);
if (!mem_reuse) {
vectorized::ColumnsWithTypeAndName columns_with_schema;
for (int i = 0; i < key_size; ++i) {
columns_with_schema.emplace_back(std::move(key_columns[i]),
_probe_expr_ctxs[i]->root()->data_type(),
_probe_expr_ctxs[i]->root()->expr_name());
}
for (int i = 0; i < agg_size; ++i) {
columns_with_schema.emplace_back(std::move(value_columns[i]), value_data_types[i], "");
}
*block = vectorized::Block(columns_with_schema);
}
return Status::OK();
}
void StreamingAggLocalState::make_nullable_output_key(vectorized::Block* block) {
if (block->rows() != 0) {
for (auto cid : _parent->cast<StreamingAggOperatorX>()._make_nullable_keys) {
block->get_by_position(cid).column = make_nullable(block->get_by_position(cid).column);
block->get_by_position(cid).type = make_nullable(block->get_by_position(cid).type);
}
}
}
void StreamingAggLocalState::_destroy_agg_status(vectorized::AggregateDataPtr data) {
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
_aggregate_evaluators[i]->function()->destroy(
data + _parent->cast<StreamingAggOperatorX>()._offsets_of_aggregate_states[i]);
}
}
void StreamingAggLocalState::_emplace_into_hash_table(vectorized::AggregateDataPtr* places,
vectorized::ColumnRawPtrs& key_columns,
const uint32_t num_rows) {
std::visit(vectorized::Overload {
[&](std::monostate& arg) -> void {
throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table");
},
[&](auto& agg_method) -> void {
SCOPED_TIMER(_hash_table_compute_timer);
using HashMethodType = std::decay_t<decltype(agg_method)>;
using AggState = typename HashMethodType::State;
AggState state(key_columns);
agg_method.init_serialized_keys(key_columns, num_rows);
auto creator = [this](const auto& ctor, auto& key, auto& origin) {
HashMethodType::try_presis_key_and_origin(key, origin,
_agg_arena_pool);
auto mapped = _aggregate_data_container->append_data(origin);
auto st = _create_agg_status(mapped);
if (!st) {
throw Exception(st.code(), st.to_string());
}
ctor(key, mapped);
};
auto creator_for_null_key = [&](auto& mapped) {
mapped = _agg_arena_pool.aligned_alloc(
Base::_parent->template cast<StreamingAggOperatorX>()
._total_size_of_aggregate_states,
Base::_parent->template cast<StreamingAggOperatorX>()
._align_aggregate_states);
auto st = _create_agg_status(mapped);
if (!st) {
throw Exception(st.code(), st.to_string());
}
};
SCOPED_TIMER(_hash_table_emplace_timer);
for (size_t i = 0; i < num_rows; ++i) {
places[i] = *agg_method.lazy_emplace(state, i, creator,
creator_for_null_key);
}
COUNTER_UPDATE(_hash_table_input_counter, num_rows);
}},
_agg_data->method_variant);
}
StreamingAggOperatorX::StreamingAggOperatorX(ObjectPool* pool, int operator_id,
const TPlanNode& tnode, const DescriptorTbl& descs,
bool require_bucket_distribution)
: StatefulOperatorX<StreamingAggLocalState>(pool, tnode, operator_id, descs),
_intermediate_tuple_id(tnode.agg_node.intermediate_tuple_id),
_output_tuple_id(tnode.agg_node.output_tuple_id),
_needs_finalize(tnode.agg_node.need_finalize),
_is_merge(false),
_is_first_phase(tnode.agg_node.__isset.is_first_phase && tnode.agg_node.is_first_phase),
_have_conjuncts(tnode.__isset.vconjunct && !tnode.vconjunct.nodes.empty()),
_agg_fn_output_row_descriptor(descs, tnode.row_tuples),
_partition_exprs(
tnode.__isset.distribute_expr_lists &&
(require_bucket_distribution ||
std::any_of(
tnode.agg_node.aggregate_functions.begin(),
tnode.agg_node.aggregate_functions.end(),
[](const TExpr& texpr) -> bool {
return texpr.nodes[0]
.fn.name.function_name.starts_with(
vectorized::
DISTINCT_FUNCTION_PREFIX);
}))
? tnode.distribute_expr_lists[0]
: tnode.agg_node.grouping_exprs) {}
Status StreamingAggOperatorX::init(const TPlanNode& tnode, RuntimeState* state) {
RETURN_IF_ERROR(StatefulOperatorX<StreamingAggLocalState>::init(tnode, state));
// ignore return status for now , so we need to introduce ExecNode::init()
RETURN_IF_ERROR(
vectorized::VExpr::create_expr_trees(tnode.agg_node.grouping_exprs, _probe_expr_ctxs));
// init aggregate functions
_aggregate_evaluators.reserve(tnode.agg_node.aggregate_functions.size());
// In case of : `select * from (select GoodEvent from hits union select CounterID from hits) as h limit 10;`
// only union with limit: we can short circuit query the pipeline exec engine.
_can_short_circuit = tnode.agg_node.aggregate_functions.empty();
TSortInfo dummy;
for (int i = 0; i < tnode.agg_node.aggregate_functions.size(); ++i) {
vectorized::AggFnEvaluator* evaluator = nullptr;
RETURN_IF_ERROR(vectorized::AggFnEvaluator::create(
_pool, tnode.agg_node.aggregate_functions[i],
tnode.agg_node.__isset.agg_sort_infos ? tnode.agg_node.agg_sort_infos[i] : dummy,
tnode.agg_node.grouping_exprs.empty(), false, &evaluator));
_aggregate_evaluators.push_back(evaluator);
}
if (state->enable_spill()) {
// If spill enabled, the streaming agg should not occupy too much memory.
_spill_streaming_agg_mem_limit =
state->query_options().__isset.spill_streaming_agg_mem_limit
? state->query_options().spill_streaming_agg_mem_limit
: 0;
} else {
_spill_streaming_agg_mem_limit = 0;
}
const auto& agg_functions = tnode.agg_node.aggregate_functions;
_is_merge = std::any_of(agg_functions.cbegin(), agg_functions.cend(),
[](const auto& e) { return e.nodes[0].agg_expr.is_merge_agg; });
_op_name = "STREAMING_AGGREGATION_OPERATOR";
return Status::OK();
}
Status StreamingAggOperatorX::prepare(RuntimeState* state) {
RETURN_IF_ERROR(StatefulOperatorX<StreamingAggLocalState>::prepare(state));
RETURN_IF_ERROR(_init_probe_expr_ctx(state));
RETURN_IF_ERROR(_init_aggregate_evaluators(state));
RETURN_IF_ERROR(_calc_aggregate_evaluators());
return Status::OK();
}
Status StreamingAggOperatorX::_init_probe_expr_ctx(RuntimeState* state) {
_intermediate_tuple_desc = state->desc_tbl().get_tuple_descriptor(_intermediate_tuple_id);
_output_tuple_desc = state->desc_tbl().get_tuple_descriptor(_output_tuple_id);
DCHECK_EQ(_intermediate_tuple_desc->slots().size(), _output_tuple_desc->slots().size());
RETURN_IF_ERROR(vectorized::VExpr::prepare(_probe_expr_ctxs, state, _child->row_desc()));
RETURN_IF_ERROR(vectorized::VExpr::open(_probe_expr_ctxs, state));
return Status::OK();
}
Status StreamingAggOperatorX::_init_aggregate_evaluators(RuntimeState* state) {
size_t j = _probe_expr_ctxs.size();
for (size_t i = 0; i < j; ++i) {
auto nullable_output = _output_tuple_desc->slots()[i]->is_nullable();
auto nullable_input = _probe_expr_ctxs[i]->root()->is_nullable();
if (nullable_output != nullable_input) {
DCHECK(nullable_output);
_make_nullable_keys.emplace_back(i);
}
}
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i, ++j) {
SlotDescriptor* intermediate_slot_desc = _intermediate_tuple_desc->slots()[j];
SlotDescriptor* output_slot_desc = _output_tuple_desc->slots()[j];
RETURN_IF_ERROR(_aggregate_evaluators[i]->prepare(
state, _child->row_desc(), intermediate_slot_desc, output_slot_desc));
_aggregate_evaluators[i]->set_version(state->be_exec_version());
}
for (int i = 0; i < _aggregate_evaluators.size(); ++i) {
RETURN_IF_ERROR(_aggregate_evaluators[i]->open(state));
}
return Status::OK();
}
Status StreamingAggOperatorX::_calc_aggregate_evaluators() {
_offsets_of_aggregate_states.resize(_aggregate_evaluators.size());
for (size_t i = 0; i < _aggregate_evaluators.size(); ++i) {
_offsets_of_aggregate_states[i] = _total_size_of_aggregate_states;
const auto& agg_function = _aggregate_evaluators[i]->function();
// aggreate states are aligned based on maximum requirement
_align_aggregate_states = std::max(_align_aggregate_states, agg_function->align_of_data());
_total_size_of_aggregate_states += agg_function->size_of_data();
// If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned.
if (i + 1 < _aggregate_evaluators.size()) {
size_t alignment_of_next_state =
_aggregate_evaluators[i + 1]->function()->align_of_data();
if ((alignment_of_next_state & (alignment_of_next_state - 1)) != 0) {
return Status::RuntimeError("Logical error: align_of_data is not 2^N");
}
/// Extend total_size to next alignment requirement
/// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state.
_total_size_of_aggregate_states =
(_total_size_of_aggregate_states + alignment_of_next_state - 1) /
alignment_of_next_state * alignment_of_next_state;
}
}
return Status::OK();
}
Status StreamingAggLocalState::close(RuntimeState* state) {
if (_closed) {
return Status::OK();
}
SCOPED_TIMER(Base::exec_time_counter());
SCOPED_TIMER(Base::_close_timer);
if (Base::_closed) {
return Status::OK();
}
_pre_aggregated_block->clear();
vectorized::PODArray<vectorized::AggregateDataPtr> tmp_places;
_places.swap(tmp_places);
std::vector<char> tmp_deserialize_buffer;
_deserialize_buffer.swap(tmp_deserialize_buffer);
/// _hash_table_size_counter may be null if prepare failed.
if (_hash_table_size_counter) {
std::visit(vectorized::Overload {[&](std::monostate& arg) -> void {
// Do nothing
},
[&](auto& agg_method) {
COUNTER_SET(_hash_table_size_counter,
int64_t(agg_method.hash_table->size()));
}},
_agg_data->method_variant);
}
_close_with_serialized_key();
return Base::close(state);
}
Status StreamingAggOperatorX::pull(RuntimeState* state, vectorized::Block* block, bool* eos) const {
auto& local_state = get_local_state(state);
SCOPED_PEAK_MEM(&local_state._estimate_memory_usage);
if (!local_state._pre_aggregated_block->empty()) {
local_state._pre_aggregated_block->swap(*block);
} else {
RETURN_IF_ERROR(local_state._get_results_with_serialized_key(state, block, eos));
local_state.make_nullable_output_key(block);
// dispose the having clause, should not be execute in prestreaming agg
RETURN_IF_ERROR(local_state.filter_block(local_state._conjuncts, block, block->columns()));
}
local_state.reached_limit(block, eos);
return Status::OK();
}
Status StreamingAggOperatorX::push(RuntimeState* state, vectorized::Block* in_block,
bool eos) const {
auto& local_state = get_local_state(state);
SCOPED_PEAK_MEM(&local_state._estimate_memory_usage);
local_state._input_num_rows += in_block->rows();
if (in_block->rows() > 0) {
RETURN_IF_ERROR(
local_state.do_pre_agg(state, in_block, local_state._pre_aggregated_block.get()));
}
in_block->clear_column_data(_child->row_desc().num_materialized_slots());
return Status::OK();
}
bool StreamingAggOperatorX::need_more_input_data(RuntimeState* state) const {
auto& local_state = get_local_state(state);
return local_state._pre_aggregated_block->empty() && !local_state._child_eos;
}
#include "common/compile_check_end.h"
} // namespace doris::pipeline