| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| #include "streaming_aggregation_operator.h" |
| |
| #include <gen_cpp/Metrics_types.h> |
| |
| #include <memory> |
| #include <utility> |
| |
| #include "common/cast_set.h" |
| #include "common/compiler_util.h" // IWYU pragma: keep |
| #include "pipeline/exec/operator.h" |
| #include "vec/aggregate_functions/aggregate_function_simple_factory.h" |
| #include "vec/exprs/vectorized_agg_fn.h" |
| #include "vec/exprs/vslot_ref.h" |
| |
| namespace doris { |
| #include "common/compile_check_begin.h" |
| class RuntimeState; |
| } // namespace doris |
| |
| namespace doris::pipeline { |
| /// The minimum reduction factor (input rows divided by output rows) to grow hash tables |
| /// in a streaming preaggregation, given that the hash tables are currently the given |
| /// size or above. The sizes roughly correspond to hash table sizes where the bucket |
| /// arrays will fit in a cache level. Intuitively, we don't want the working set of the |
| /// aggregation to expand to the next level of cache unless we're reducing the input |
| /// enough to outweigh the increased memory latency we'll incur for each hash table |
| /// lookup. |
| /// |
| /// Note that the current reduction achieved is not always a good estimate of the |
| /// final reduction. It may be biased either way depending on the ordering of the |
| /// input. If the input order is random, we will underestimate the final reduction |
| /// factor because the probability of a row having the same key as a previous row |
| /// increases as more input is processed. If the input order is correlated with the |
| /// key, skew may bias the estimate. If high cardinality keys appear first, we |
| /// may overestimate and if low cardinality keys appear first, we underestimate. |
| /// To estimate the eventual reduction achieved, we estimate the final reduction |
| /// using the planner's estimated input cardinality and the assumption that input |
| /// is in a random order. This means that we assume that the reduction factor will |
| /// increase over time. |
| struct StreamingHtMinReductionEntry { |
| // Use 'streaming_ht_min_reduction' if the total size of hash table bucket directories in |
| // bytes is greater than this threshold. |
| int min_ht_mem; |
| // The minimum reduction factor to expand the hash tables. |
| double streaming_ht_min_reduction; |
| }; |
| |
| // TODO: experimentally tune these values and also programmatically get the cache size |
| // of the machine that we're running on. |
| static constexpr StreamingHtMinReductionEntry STREAMING_HT_MIN_REDUCTION[] = { |
| // Expand up to L2 cache always. |
| {0, 0.0}, |
| // Expand into L3 cache if we look like we're getting some reduction. |
| // At present, The L2 cache is generally 1024k or more |
| {1024 * 1024, 1.1}, |
| // Expand into main memory if we're getting a significant reduction. |
| // The L3 cache is generally 16MB or more |
| {16 * 1024 * 1024, 2.0}, |
| }; |
| |
| static constexpr int STREAMING_HT_MIN_REDUCTION_SIZE = |
| sizeof(STREAMING_HT_MIN_REDUCTION) / sizeof(STREAMING_HT_MIN_REDUCTION[0]); |
| |
| StreamingAggLocalState::StreamingAggLocalState(RuntimeState* state, OperatorXBase* parent) |
| : Base(state, parent), |
| _agg_data(std::make_unique<AggregatedDataVariants>()), |
| _agg_profile_arena(std::make_unique<vectorized::Arena>()), |
| _child_block(vectorized::Block::create_unique()), |
| _pre_aggregated_block(vectorized::Block::create_unique()) {} |
| |
| Status StreamingAggLocalState::init(RuntimeState* state, LocalStateInfo& info) { |
| RETURN_IF_ERROR(Base::init(state, info)); |
| SCOPED_TIMER(Base::exec_time_counter()); |
| SCOPED_TIMER(Base::_init_timer); |
| _hash_table_memory_usage = |
| ADD_COUNTER_WITH_LEVEL(Base::custom_profile(), "MemoryUsageHashTable", TUnit::BYTES, 1); |
| _serialize_key_arena_memory_usage = Base::custom_profile()->AddHighWaterMarkCounter( |
| "MemoryUsageSerializeKeyArena", TUnit::BYTES, "", 1); |
| |
| _build_timer = ADD_TIMER(Base::custom_profile(), "BuildTime"); |
| _merge_timer = ADD_TIMER(Base::custom_profile(), "MergeTime"); |
| _expr_timer = ADD_TIMER(Base::custom_profile(), "ExprTime"); |
| _insert_values_to_column_timer = ADD_TIMER(Base::custom_profile(), "InsertValuesToColumnTime"); |
| _deserialize_data_timer = ADD_TIMER(Base::custom_profile(), "DeserializeAndMergeTime"); |
| _hash_table_compute_timer = ADD_TIMER(Base::custom_profile(), "HashTableComputeTime"); |
| _hash_table_emplace_timer = ADD_TIMER(Base::custom_profile(), "HashTableEmplaceTime"); |
| _hash_table_input_counter = |
| ADD_COUNTER(Base::custom_profile(), "HashTableInputCount", TUnit::UNIT); |
| _hash_table_size_counter = ADD_COUNTER(custom_profile(), "HashTableSize", TUnit::UNIT); |
| _streaming_agg_timer = ADD_TIMER(custom_profile(), "StreamingAggTime"); |
| _build_timer = ADD_TIMER(custom_profile(), "BuildTime"); |
| _expr_timer = ADD_TIMER(Base::custom_profile(), "ExprTime"); |
| _get_results_timer = ADD_TIMER(custom_profile(), "GetResultsTime"); |
| _hash_table_iterate_timer = ADD_TIMER(custom_profile(), "HashTableIterateTime"); |
| _insert_keys_to_column_timer = ADD_TIMER(custom_profile(), "InsertKeysToColumnTime"); |
| |
| return Status::OK(); |
| } |
| |
| Status StreamingAggLocalState::open(RuntimeState* state) { |
| SCOPED_TIMER(Base::exec_time_counter()); |
| SCOPED_TIMER(Base::_open_timer); |
| RETURN_IF_ERROR(Base::open(state)); |
| |
| auto& p = Base::_parent->template cast<StreamingAggOperatorX>(); |
| for (auto& evaluator : p._aggregate_evaluators) { |
| _aggregate_evaluators.push_back(evaluator->clone(state, p._pool)); |
| } |
| _probe_expr_ctxs.resize(p._probe_expr_ctxs.size()); |
| for (size_t i = 0; i < _probe_expr_ctxs.size(); i++) { |
| RETURN_IF_ERROR(p._probe_expr_ctxs[i]->clone(state, _probe_expr_ctxs[i])); |
| } |
| |
| for (auto& evaluator : _aggregate_evaluators) { |
| evaluator->set_timer(_merge_timer, _expr_timer); |
| } |
| |
| DCHECK(!_probe_expr_ctxs.empty()); |
| |
| RETURN_IF_ERROR(_init_hash_method(_probe_expr_ctxs)); |
| |
| std::visit(vectorized::Overload { |
| [&](std::monostate& arg) -> void { |
| throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table"); |
| }, |
| [&](auto& agg_method) { |
| using HashTableType = std::decay_t<decltype(agg_method)>; |
| using KeyType = typename HashTableType::Key; |
| |
| /// some aggregate functions (like AVG for decimal) have align issues. |
| _aggregate_data_container = std::make_unique<AggregateDataContainer>( |
| sizeof(KeyType), ((p._total_size_of_aggregate_states + |
| p._align_aggregate_states - 1) / |
| p._align_aggregate_states) * |
| p._align_aggregate_states); |
| }}, |
| _agg_data->method_variant); |
| |
| if (p._is_merge || p._needs_finalize) { |
| return Status::InvalidArgument( |
| "StreamingAggLocalState only support no merge and no finalize, " |
| "but got is_merge={}, needs_finalize={}", |
| p._is_merge, p._needs_finalize); |
| } |
| |
| _should_limit_output = p._limit != -1 && // has limit |
| (!p._have_conjuncts) && // no having conjunct |
| p._needs_finalize; // agg's finalize step |
| |
| return Status::OK(); |
| } |
| |
| size_t StreamingAggLocalState::_get_hash_table_size() { |
| return std::visit( |
| vectorized::Overload {[&](std::monostate& arg) -> size_t { |
| throw doris::Exception(ErrorCode::INTERNAL_ERROR, |
| "uninited hash table"); |
| return 0; |
| }, |
| [&](auto& agg_method) { return agg_method.hash_table->size(); }}, |
| _agg_data->method_variant); |
| } |
| |
| void StreamingAggLocalState::_update_memusage_with_serialized_key() { |
| std::visit(vectorized::Overload { |
| [&](std::monostate& arg) -> void { |
| throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table"); |
| }, |
| [&](auto& agg_method) -> void { |
| auto& data = *agg_method.hash_table; |
| int64_t arena_memory_usage = _agg_arena_pool.size() + |
| _aggregate_data_container->memory_usage(); |
| int64_t hash_table_memory_usage = data.get_buffer_size_in_bytes(); |
| |
| COUNTER_SET(_memory_used_counter, |
| arena_memory_usage + hash_table_memory_usage); |
| |
| COUNTER_SET(_serialize_key_arena_memory_usage, arena_memory_usage); |
| COUNTER_SET(_hash_table_memory_usage, hash_table_memory_usage); |
| }}, |
| _agg_data->method_variant); |
| } |
| |
| Status StreamingAggLocalState::_init_hash_method(const vectorized::VExprContextSPtrs& probe_exprs) { |
| RETURN_IF_ERROR(init_hash_method<AggregatedDataVariants>( |
| _agg_data.get(), get_data_types(probe_exprs), |
| Base::_parent->template cast<StreamingAggOperatorX>()._is_first_phase)); |
| return Status::OK(); |
| } |
| |
| Status StreamingAggLocalState::do_pre_agg(RuntimeState* state, vectorized::Block* input_block, |
| vectorized::Block* output_block) { |
| if (low_memory_mode()) { |
| auto& p = Base::_parent->template cast<StreamingAggOperatorX>(); |
| p.set_low_memory_mode(state); |
| } |
| RETURN_IF_ERROR(_pre_agg_with_serialized_key(input_block, output_block)); |
| |
| // pre stream agg need use _num_row_return to decide whether to do pre stream agg |
| _cur_num_rows_returned += output_block->rows(); |
| make_nullable_output_key(output_block); |
| _update_memusage_with_serialized_key(); |
| return Status::OK(); |
| } |
| |
| bool StreamingAggLocalState::_should_expand_preagg_hash_tables() { |
| if (!_should_expand_hash_table) { |
| return false; |
| } |
| |
| return std::visit( |
| vectorized::Overload { |
| [&](std::monostate& arg) -> bool { |
| throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table"); |
| return false; |
| }, |
| [&](auto& agg_method) -> bool { |
| auto& hash_tbl = *agg_method.hash_table; |
| auto [ht_mem, ht_rows] = |
| std::pair {hash_tbl.get_buffer_size_in_bytes(), hash_tbl.size()}; |
| |
| // Need some rows in tables to have valid statistics. |
| if (ht_rows == 0) { |
| return true; |
| } |
| |
| // Find the appropriate reduction factor in our table for the current hash table sizes. |
| int cache_level = 0; |
| while (cache_level + 1 < STREAMING_HT_MIN_REDUCTION_SIZE && |
| ht_mem >= STREAMING_HT_MIN_REDUCTION[cache_level + 1].min_ht_mem) { |
| ++cache_level; |
| } |
| |
| // Compare the number of rows in the hash table with the number of input rows that |
| // were aggregated into it. Exclude passed through rows from this calculation since |
| // they were not in hash tables. |
| const int64_t input_rows = _input_num_rows; |
| const int64_t aggregated_input_rows = input_rows - _cur_num_rows_returned; |
| // TODO chenhao |
| // const int64_t expected_input_rows = estimated_input_cardinality_ - num_rows_returned_; |
| double current_reduction = static_cast<double>(aggregated_input_rows) / |
| static_cast<double>(ht_rows); |
| |
| // TODO: workaround for IMPALA-2490: subplan node rows_returned counter may be |
| // inaccurate, which could lead to a divide by zero below. |
| if (aggregated_input_rows <= 0) { |
| return true; |
| } |
| |
| // Extrapolate the current reduction factor (r) using the formula |
| // R = 1 + (N / n) * (r - 1), where R is the reduction factor over the full input data |
| // set, N is the number of input rows, excluding passed-through rows, and n is the |
| // number of rows inserted or merged into the hash tables. This is a very rough |
| // approximation but is good enough to be useful. |
| // TODO: consider collecting more statistics to better estimate reduction. |
| // double estimated_reduction = aggregated_input_rows >= expected_input_rows |
| // ? current_reduction |
| // : 1 + (expected_input_rows / aggregated_input_rows) * (current_reduction - 1); |
| double min_reduction = |
| STREAMING_HT_MIN_REDUCTION[cache_level].streaming_ht_min_reduction; |
| |
| // COUNTER_SET(preagg_estimated_reduction_, estimated_reduction); |
| // COUNTER_SET(preagg_streaming_ht_min_reduction_, min_reduction); |
| // return estimated_reduction > min_reduction; |
| _should_expand_hash_table = current_reduction > min_reduction; |
| return _should_expand_hash_table; |
| }}, |
| _agg_data->method_variant); |
| } |
| |
| size_t StreamingAggLocalState::_memory_usage() const { |
| size_t usage = 0; |
| usage += _agg_arena_pool.size(); |
| |
| if (_aggregate_data_container) { |
| usage += _aggregate_data_container->memory_usage(); |
| } |
| |
| std::visit(vectorized::Overload {[&](std::monostate& arg) -> void { |
| throw doris::Exception(ErrorCode::INTERNAL_ERROR, |
| "uninited hash table"); |
| }, |
| [&](auto& agg_method) { |
| usage += agg_method.hash_table->get_buffer_size_in_bytes(); |
| }}, |
| _agg_data->method_variant); |
| |
| return usage; |
| } |
| |
| bool StreamingAggLocalState::_should_not_do_pre_agg(size_t rows) { |
| // Stop expanding hash tables if we're not reducing the input sufficiently. As our |
| // hash tables expand out of each level of cache hierarchy, every hash table lookup |
| // will take longer. We also may not be able to expand hash tables because of memory |
| // pressure. In either case we should always use the remaining space in the hash table |
| // to avoid wasting memory. |
| // But for fixed hash map, it never need to expand |
| auto& p = Base::_parent->template cast<StreamingAggOperatorX>(); |
| bool ret_flag = false; |
| const auto spill_streaming_agg_mem_limit = p._spill_streaming_agg_mem_limit; |
| const bool used_too_much_memory = |
| spill_streaming_agg_mem_limit > 0 && _memory_usage() > spill_streaming_agg_mem_limit; |
| std::visit( |
| vectorized::Overload { |
| [&](std::monostate& arg) { |
| throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table"); |
| }, |
| [&](auto& agg_method) { |
| auto& hash_tbl = *agg_method.hash_table; |
| /// If too much memory is used during the pre-aggregation stage, |
| /// it is better to output the data directly without performing further aggregation. |
| // do not try to do agg, just init and serialize directly return the out_block |
| if (used_too_much_memory || (hash_tbl.add_elem_size_overflow(rows) && |
| !_should_expand_preagg_hash_tables())) { |
| SCOPED_TIMER(_streaming_agg_timer); |
| ret_flag = true; |
| } |
| }}, |
| _agg_data->method_variant); |
| |
| return ret_flag; |
| } |
| |
| Status StreamingAggLocalState::_pre_agg_with_serialized_key(doris::vectorized::Block* in_block, |
| doris::vectorized::Block* out_block) { |
| SCOPED_TIMER(_build_timer); |
| DCHECK(!_probe_expr_ctxs.empty()); |
| |
| auto& p = Base::_parent->template cast<StreamingAggOperatorX>(); |
| |
| size_t key_size = _probe_expr_ctxs.size(); |
| vectorized::ColumnRawPtrs key_columns(key_size); |
| { |
| SCOPED_TIMER(_expr_timer); |
| for (size_t i = 0; i < key_size; ++i) { |
| int result_column_id = -1; |
| RETURN_IF_ERROR(_probe_expr_ctxs[i]->execute(in_block, &result_column_id)); |
| in_block->get_by_position(result_column_id).column = |
| in_block->get_by_position(result_column_id) |
| .column->convert_to_full_column_if_const(); |
| key_columns[i] = in_block->get_by_position(result_column_id).column.get(); |
| key_columns[i]->assume_mutable()->replace_float_special_values(); |
| } |
| } |
| |
| uint32_t rows = (uint32_t)in_block->rows(); |
| _places.resize(rows); |
| |
| if (_should_not_do_pre_agg(rows)) { |
| bool mem_reuse = p._make_nullable_keys.empty() && out_block->mem_reuse(); |
| |
| std::vector<vectorized::DataTypePtr> data_types; |
| vectorized::MutableColumns value_columns; |
| for (int i = 0; i < _aggregate_evaluators.size(); ++i) { |
| auto data_type = _aggregate_evaluators[i]->function()->get_serialized_type(); |
| if (mem_reuse) { |
| value_columns.emplace_back( |
| std::move(*out_block->get_by_position(i + key_size).column).mutate()); |
| } else { |
| value_columns.emplace_back( |
| _aggregate_evaluators[i]->function()->create_serialize_column()); |
| } |
| data_types.emplace_back(data_type); |
| } |
| |
| for (int i = 0; i != _aggregate_evaluators.size(); ++i) { |
| SCOPED_TIMER(_insert_values_to_column_timer); |
| RETURN_IF_ERROR(_aggregate_evaluators[i]->streaming_agg_serialize_to_column( |
| in_block, value_columns[i], rows, _agg_arena_pool)); |
| } |
| |
| if (!mem_reuse) { |
| vectorized::ColumnsWithTypeAndName columns_with_schema; |
| for (int i = 0; i < key_size; ++i) { |
| columns_with_schema.emplace_back(key_columns[i]->clone_resized(rows), |
| _probe_expr_ctxs[i]->root()->data_type(), |
| _probe_expr_ctxs[i]->root()->expr_name()); |
| } |
| for (int i = 0; i < value_columns.size(); ++i) { |
| columns_with_schema.emplace_back(std::move(value_columns[i]), data_types[i], ""); |
| } |
| out_block->swap(vectorized::Block(columns_with_schema)); |
| } else { |
| for (int i = 0; i < key_size; ++i) { |
| std::move(*out_block->get_by_position(i).column) |
| .mutate() |
| ->insert_range_from(*key_columns[i], 0, rows); |
| } |
| } |
| } else { |
| _emplace_into_hash_table(_places.data(), key_columns, rows); |
| |
| for (int i = 0; i < _aggregate_evaluators.size(); ++i) { |
| RETURN_IF_ERROR(_aggregate_evaluators[i]->execute_batch_add( |
| in_block, p._offsets_of_aggregate_states[i], _places.data(), _agg_arena_pool, |
| _should_expand_hash_table)); |
| } |
| } |
| |
| return Status::OK(); |
| } |
| |
| Status StreamingAggLocalState::_create_agg_status(vectorized::AggregateDataPtr data) { |
| auto& p = Base::_parent->template cast<StreamingAggOperatorX>(); |
| for (int i = 0; i < _aggregate_evaluators.size(); ++i) { |
| try { |
| _aggregate_evaluators[i]->create(data + p._offsets_of_aggregate_states[i]); |
| } catch (...) { |
| for (int j = 0; j < i; ++j) { |
| _aggregate_evaluators[j]->destroy(data + p._offsets_of_aggregate_states[j]); |
| } |
| throw; |
| } |
| } |
| return Status::OK(); |
| } |
| |
| Status StreamingAggLocalState::_get_results_with_serialized_key(RuntimeState* state, |
| vectorized::Block* block, |
| bool* eos) { |
| SCOPED_TIMER(_get_results_timer); |
| auto& p = _parent->cast<StreamingAggOperatorX>(); |
| const auto key_size = _probe_expr_ctxs.size(); |
| const auto agg_size = _aggregate_evaluators.size(); |
| vectorized::MutableColumns value_columns(agg_size); |
| vectorized::DataTypes value_data_types(agg_size); |
| |
| // non-nullable column(id in `_make_nullable_keys`) will be converted to nullable. |
| bool mem_reuse = p._make_nullable_keys.empty() && block->mem_reuse(); |
| |
| vectorized::MutableColumns key_columns; |
| for (int i = 0; i < key_size; ++i) { |
| if (mem_reuse) { |
| key_columns.emplace_back(std::move(*block->get_by_position(i).column).mutate()); |
| } else { |
| key_columns.emplace_back(_probe_expr_ctxs[i]->root()->data_type()->create_column()); |
| } |
| } |
| |
| std::visit( |
| vectorized::Overload { |
| [&](std::monostate& arg) -> void { |
| throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table"); |
| }, |
| [&](auto& agg_method) -> void { |
| agg_method.init_iterator(); |
| auto& data = *agg_method.hash_table; |
| const auto size = std::min(data.size(), size_t(state->batch_size())); |
| using KeyType = std::decay_t<decltype(agg_method)>::Key; |
| std::vector<KeyType> keys(size); |
| if (_values.size() < size + 1) { |
| _values.resize(size + 1); |
| } |
| |
| uint32_t num_rows = 0; |
| _aggregate_data_container->init_once(); |
| auto& iter = _aggregate_data_container->iterator; |
| |
| { |
| SCOPED_TIMER(_hash_table_iterate_timer); |
| while (iter != _aggregate_data_container->end() && |
| num_rows < state->batch_size()) { |
| keys[num_rows] = iter.template get_key<KeyType>(); |
| _values[num_rows] = iter.get_aggregate_data(); |
| ++iter; |
| ++num_rows; |
| } |
| } |
| |
| { |
| SCOPED_TIMER(_insert_keys_to_column_timer); |
| agg_method.insert_keys_into_columns(keys, key_columns, num_rows); |
| } |
| |
| if (iter == _aggregate_data_container->end()) { |
| if (agg_method.hash_table->has_null_key_data()) { |
| // only one key of group by support wrap null key |
| // here need additional processing logic on the null key / value |
| DCHECK(key_columns.size() == 1); |
| DCHECK(key_columns[0]->is_nullable()); |
| if (agg_method.hash_table->has_null_key_data()) { |
| key_columns[0]->insert_data(nullptr, 0); |
| _values[num_rows] = |
| agg_method.hash_table->template get_null_key_data< |
| vectorized::AggregateDataPtr>(); |
| ++num_rows; |
| *eos = true; |
| } |
| } else { |
| *eos = true; |
| } |
| } |
| |
| { |
| SCOPED_TIMER(_insert_values_to_column_timer); |
| for (size_t i = 0; i < _aggregate_evaluators.size(); ++i) { |
| value_data_types[i] = |
| _aggregate_evaluators[i]->function()->get_serialized_type(); |
| if (mem_reuse) { |
| value_columns[i] = |
| std::move(*block->get_by_position(i + key_size).column) |
| .mutate(); |
| } else { |
| value_columns[i] = _aggregate_evaluators[i] |
| ->function() |
| ->create_serialize_column(); |
| } |
| _aggregate_evaluators[i]->function()->serialize_to_column( |
| _values, p._offsets_of_aggregate_states[i], |
| value_columns[i], num_rows); |
| } |
| } |
| }}, |
| _agg_data->method_variant); |
| |
| if (!mem_reuse) { |
| vectorized::ColumnsWithTypeAndName columns_with_schema; |
| for (int i = 0; i < key_size; ++i) { |
| columns_with_schema.emplace_back(std::move(key_columns[i]), |
| _probe_expr_ctxs[i]->root()->data_type(), |
| _probe_expr_ctxs[i]->root()->expr_name()); |
| } |
| for (int i = 0; i < agg_size; ++i) { |
| columns_with_schema.emplace_back(std::move(value_columns[i]), value_data_types[i], ""); |
| } |
| *block = vectorized::Block(columns_with_schema); |
| } |
| |
| return Status::OK(); |
| } |
| |
| void StreamingAggLocalState::make_nullable_output_key(vectorized::Block* block) { |
| if (block->rows() != 0) { |
| for (auto cid : _parent->cast<StreamingAggOperatorX>()._make_nullable_keys) { |
| block->get_by_position(cid).column = make_nullable(block->get_by_position(cid).column); |
| block->get_by_position(cid).type = make_nullable(block->get_by_position(cid).type); |
| } |
| } |
| } |
| |
| void StreamingAggLocalState::_destroy_agg_status(vectorized::AggregateDataPtr data) { |
| for (int i = 0; i < _aggregate_evaluators.size(); ++i) { |
| _aggregate_evaluators[i]->function()->destroy( |
| data + _parent->cast<StreamingAggOperatorX>()._offsets_of_aggregate_states[i]); |
| } |
| } |
| |
| void StreamingAggLocalState::_emplace_into_hash_table(vectorized::AggregateDataPtr* places, |
| vectorized::ColumnRawPtrs& key_columns, |
| const uint32_t num_rows) { |
| std::visit(vectorized::Overload { |
| [&](std::monostate& arg) -> void { |
| throw doris::Exception(ErrorCode::INTERNAL_ERROR, "uninited hash table"); |
| }, |
| [&](auto& agg_method) -> void { |
| SCOPED_TIMER(_hash_table_compute_timer); |
| using HashMethodType = std::decay_t<decltype(agg_method)>; |
| using AggState = typename HashMethodType::State; |
| AggState state(key_columns); |
| agg_method.init_serialized_keys(key_columns, num_rows); |
| |
| auto creator = [this](const auto& ctor, auto& key, auto& origin) { |
| HashMethodType::try_presis_key_and_origin(key, origin, |
| _agg_arena_pool); |
| auto mapped = _aggregate_data_container->append_data(origin); |
| auto st = _create_agg_status(mapped); |
| if (!st) { |
| throw Exception(st.code(), st.to_string()); |
| } |
| ctor(key, mapped); |
| }; |
| |
| auto creator_for_null_key = [&](auto& mapped) { |
| mapped = _agg_arena_pool.aligned_alloc( |
| Base::_parent->template cast<StreamingAggOperatorX>() |
| ._total_size_of_aggregate_states, |
| Base::_parent->template cast<StreamingAggOperatorX>() |
| ._align_aggregate_states); |
| auto st = _create_agg_status(mapped); |
| if (!st) { |
| throw Exception(st.code(), st.to_string()); |
| } |
| }; |
| |
| SCOPED_TIMER(_hash_table_emplace_timer); |
| for (size_t i = 0; i < num_rows; ++i) { |
| places[i] = *agg_method.lazy_emplace(state, i, creator, |
| creator_for_null_key); |
| } |
| |
| COUNTER_UPDATE(_hash_table_input_counter, num_rows); |
| }}, |
| _agg_data->method_variant); |
| } |
| |
| StreamingAggOperatorX::StreamingAggOperatorX(ObjectPool* pool, int operator_id, |
| const TPlanNode& tnode, const DescriptorTbl& descs, |
| bool require_bucket_distribution) |
| : StatefulOperatorX<StreamingAggLocalState>(pool, tnode, operator_id, descs), |
| _intermediate_tuple_id(tnode.agg_node.intermediate_tuple_id), |
| _output_tuple_id(tnode.agg_node.output_tuple_id), |
| _needs_finalize(tnode.agg_node.need_finalize), |
| _is_merge(false), |
| _is_first_phase(tnode.agg_node.__isset.is_first_phase && tnode.agg_node.is_first_phase), |
| _have_conjuncts(tnode.__isset.vconjunct && !tnode.vconjunct.nodes.empty()), |
| _agg_fn_output_row_descriptor(descs, tnode.row_tuples), |
| _partition_exprs( |
| tnode.__isset.distribute_expr_lists && |
| (require_bucket_distribution || |
| std::any_of( |
| tnode.agg_node.aggregate_functions.begin(), |
| tnode.agg_node.aggregate_functions.end(), |
| [](const TExpr& texpr) -> bool { |
| return texpr.nodes[0] |
| .fn.name.function_name.starts_with( |
| vectorized:: |
| DISTINCT_FUNCTION_PREFIX); |
| })) |
| ? tnode.distribute_expr_lists[0] |
| : tnode.agg_node.grouping_exprs) {} |
| |
| Status StreamingAggOperatorX::init(const TPlanNode& tnode, RuntimeState* state) { |
| RETURN_IF_ERROR(StatefulOperatorX<StreamingAggLocalState>::init(tnode, state)); |
| // ignore return status for now , so we need to introduce ExecNode::init() |
| RETURN_IF_ERROR( |
| vectorized::VExpr::create_expr_trees(tnode.agg_node.grouping_exprs, _probe_expr_ctxs)); |
| |
| // init aggregate functions |
| _aggregate_evaluators.reserve(tnode.agg_node.aggregate_functions.size()); |
| // In case of : `select * from (select GoodEvent from hits union select CounterID from hits) as h limit 10;` |
| // only union with limit: we can short circuit query the pipeline exec engine. |
| _can_short_circuit = tnode.agg_node.aggregate_functions.empty(); |
| |
| TSortInfo dummy; |
| for (int i = 0; i < tnode.agg_node.aggregate_functions.size(); ++i) { |
| vectorized::AggFnEvaluator* evaluator = nullptr; |
| RETURN_IF_ERROR(vectorized::AggFnEvaluator::create( |
| _pool, tnode.agg_node.aggregate_functions[i], |
| tnode.agg_node.__isset.agg_sort_infos ? tnode.agg_node.agg_sort_infos[i] : dummy, |
| tnode.agg_node.grouping_exprs.empty(), false, &evaluator)); |
| _aggregate_evaluators.push_back(evaluator); |
| } |
| |
| if (state->enable_spill()) { |
| // If spill enabled, the streaming agg should not occupy too much memory. |
| _spill_streaming_agg_mem_limit = |
| state->query_options().__isset.spill_streaming_agg_mem_limit |
| ? state->query_options().spill_streaming_agg_mem_limit |
| : 0; |
| } else { |
| _spill_streaming_agg_mem_limit = 0; |
| } |
| |
| const auto& agg_functions = tnode.agg_node.aggregate_functions; |
| _is_merge = std::any_of(agg_functions.cbegin(), agg_functions.cend(), |
| [](const auto& e) { return e.nodes[0].agg_expr.is_merge_agg; }); |
| _op_name = "STREAMING_AGGREGATION_OPERATOR"; |
| return Status::OK(); |
| } |
| |
| Status StreamingAggOperatorX::prepare(RuntimeState* state) { |
| RETURN_IF_ERROR(StatefulOperatorX<StreamingAggLocalState>::prepare(state)); |
| |
| RETURN_IF_ERROR(_init_probe_expr_ctx(state)); |
| |
| RETURN_IF_ERROR(_init_aggregate_evaluators(state)); |
| |
| RETURN_IF_ERROR(_calc_aggregate_evaluators()); |
| |
| return Status::OK(); |
| } |
| |
| Status StreamingAggOperatorX::_init_probe_expr_ctx(RuntimeState* state) { |
| _intermediate_tuple_desc = state->desc_tbl().get_tuple_descriptor(_intermediate_tuple_id); |
| _output_tuple_desc = state->desc_tbl().get_tuple_descriptor(_output_tuple_id); |
| DCHECK_EQ(_intermediate_tuple_desc->slots().size(), _output_tuple_desc->slots().size()); |
| RETURN_IF_ERROR(vectorized::VExpr::prepare(_probe_expr_ctxs, state, _child->row_desc())); |
| RETURN_IF_ERROR(vectorized::VExpr::open(_probe_expr_ctxs, state)); |
| return Status::OK(); |
| } |
| |
| Status StreamingAggOperatorX::_init_aggregate_evaluators(RuntimeState* state) { |
| size_t j = _probe_expr_ctxs.size(); |
| for (size_t i = 0; i < j; ++i) { |
| auto nullable_output = _output_tuple_desc->slots()[i]->is_nullable(); |
| auto nullable_input = _probe_expr_ctxs[i]->root()->is_nullable(); |
| if (nullable_output != nullable_input) { |
| DCHECK(nullable_output); |
| _make_nullable_keys.emplace_back(i); |
| } |
| } |
| for (size_t i = 0; i < _aggregate_evaluators.size(); ++i, ++j) { |
| SlotDescriptor* intermediate_slot_desc = _intermediate_tuple_desc->slots()[j]; |
| SlotDescriptor* output_slot_desc = _output_tuple_desc->slots()[j]; |
| RETURN_IF_ERROR(_aggregate_evaluators[i]->prepare( |
| state, _child->row_desc(), intermediate_slot_desc, output_slot_desc)); |
| _aggregate_evaluators[i]->set_version(state->be_exec_version()); |
| } |
| for (int i = 0; i < _aggregate_evaluators.size(); ++i) { |
| RETURN_IF_ERROR(_aggregate_evaluators[i]->open(state)); |
| } |
| return Status::OK(); |
| } |
| |
| Status StreamingAggOperatorX::_calc_aggregate_evaluators() { |
| _offsets_of_aggregate_states.resize(_aggregate_evaluators.size()); |
| |
| for (size_t i = 0; i < _aggregate_evaluators.size(); ++i) { |
| _offsets_of_aggregate_states[i] = _total_size_of_aggregate_states; |
| |
| const auto& agg_function = _aggregate_evaluators[i]->function(); |
| // aggreate states are aligned based on maximum requirement |
| _align_aggregate_states = std::max(_align_aggregate_states, agg_function->align_of_data()); |
| _total_size_of_aggregate_states += agg_function->size_of_data(); |
| |
| // If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned. |
| if (i + 1 < _aggregate_evaluators.size()) { |
| size_t alignment_of_next_state = |
| _aggregate_evaluators[i + 1]->function()->align_of_data(); |
| if ((alignment_of_next_state & (alignment_of_next_state - 1)) != 0) { |
| return Status::RuntimeError("Logical error: align_of_data is not 2^N"); |
| } |
| |
| /// Extend total_size to next alignment requirement |
| /// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state. |
| _total_size_of_aggregate_states = |
| (_total_size_of_aggregate_states + alignment_of_next_state - 1) / |
| alignment_of_next_state * alignment_of_next_state; |
| } |
| } |
| return Status::OK(); |
| } |
| |
| Status StreamingAggLocalState::close(RuntimeState* state) { |
| if (_closed) { |
| return Status::OK(); |
| } |
| SCOPED_TIMER(Base::exec_time_counter()); |
| SCOPED_TIMER(Base::_close_timer); |
| if (Base::_closed) { |
| return Status::OK(); |
| } |
| _pre_aggregated_block->clear(); |
| vectorized::PODArray<vectorized::AggregateDataPtr> tmp_places; |
| _places.swap(tmp_places); |
| |
| std::vector<char> tmp_deserialize_buffer; |
| _deserialize_buffer.swap(tmp_deserialize_buffer); |
| |
| /// _hash_table_size_counter may be null if prepare failed. |
| if (_hash_table_size_counter) { |
| std::visit(vectorized::Overload {[&](std::monostate& arg) -> void { |
| // Do nothing |
| }, |
| [&](auto& agg_method) { |
| COUNTER_SET(_hash_table_size_counter, |
| int64_t(agg_method.hash_table->size())); |
| }}, |
| _agg_data->method_variant); |
| } |
| _close_with_serialized_key(); |
| return Base::close(state); |
| } |
| |
| Status StreamingAggOperatorX::pull(RuntimeState* state, vectorized::Block* block, bool* eos) const { |
| auto& local_state = get_local_state(state); |
| SCOPED_PEAK_MEM(&local_state._estimate_memory_usage); |
| if (!local_state._pre_aggregated_block->empty()) { |
| local_state._pre_aggregated_block->swap(*block); |
| } else { |
| RETURN_IF_ERROR(local_state._get_results_with_serialized_key(state, block, eos)); |
| local_state.make_nullable_output_key(block); |
| // dispose the having clause, should not be execute in prestreaming agg |
| RETURN_IF_ERROR(local_state.filter_block(local_state._conjuncts, block, block->columns())); |
| } |
| local_state.reached_limit(block, eos); |
| |
| return Status::OK(); |
| } |
| |
| Status StreamingAggOperatorX::push(RuntimeState* state, vectorized::Block* in_block, |
| bool eos) const { |
| auto& local_state = get_local_state(state); |
| SCOPED_PEAK_MEM(&local_state._estimate_memory_usage); |
| |
| local_state._input_num_rows += in_block->rows(); |
| if (in_block->rows() > 0) { |
| RETURN_IF_ERROR( |
| local_state.do_pre_agg(state, in_block, local_state._pre_aggregated_block.get())); |
| } |
| in_block->clear_column_data(_child->row_desc().num_materialized_slots()); |
| return Status::OK(); |
| } |
| |
| bool StreamingAggOperatorX::need_more_input_data(RuntimeState* state) const { |
| auto& local_state = get_local_state(state); |
| return local_state._pre_aggregated_block->empty() && !local_state._child_eos; |
| } |
| |
| #include "common/compile_check_end.h" |
| } // namespace doris::pipeline |