blob: 52860bdd09a6b985ec11de351fa4a8e08be1f00a [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This file is copied from
// https://github.com/apache/impala/blob/branch-2.9.0/be/src/runtime/row-batch.cc
// and modified by Doris
#include "runtime/row_batch.h"
#include <snappy/snappy.h>
#include <stdint.h> // for intptr_t
#include "common/utils.h"
#include "gen_cpp/Data_types.h"
#include "gen_cpp/data.pb.h"
#include "runtime/buffered_tuple_stream2.inline.h"
#include "runtime/collection_value.h"
#include "runtime/exec_env.h"
#include "runtime/runtime_state.h"
#include "runtime/string_value.h"
#include "runtime/thread_context.h"
#include "runtime/tuple_row.h"
#include "util/exception.h"
#include "vec/columns/column_vector.h"
#include "vec/core/block.h"
using std::vector;
namespace doris {
const int RowBatch::AT_CAPACITY_MEM_USAGE = 8 * 1024 * 1024;
const int RowBatch::FIXED_LEN_BUFFER_LIMIT = AT_CAPACITY_MEM_USAGE / 2;
RowBatch::RowBatch(const RowDescriptor& row_desc, int capacity)
: _has_in_flight_row(false),
_num_rows(0),
_num_uncommitted_rows(0),
_capacity(capacity),
_flush(FlushMode::NO_FLUSH_RESOURCES),
_needs_deep_copy(false),
_num_tuples_per_row(row_desc.tuple_descriptors().size()),
_row_desc(row_desc),
_auxiliary_mem_usage(0),
_need_to_return(false),
_tuple_data_pool() {
DCHECK_GT(capacity, 0);
_tuple_ptrs_size = _capacity * _num_tuples_per_row * sizeof(Tuple*);
DCHECK_GT(_tuple_ptrs_size, 0);
_tuple_ptrs = (Tuple**)(malloc(_tuple_ptrs_size));
DCHECK(_tuple_ptrs != nullptr);
}
// TODO: we want our input_batch's tuple_data to come from our (not yet implemented)
// global runtime memory segment; how do we get thrift to allocate it from there?
// maybe change line (in Data_types.cc generated from Data.thrift)
// xfer += iprot->readString(this->tuple_data[_i9]);
// to allocated string data in special mempool
// (change via python script that runs over Data_types.cc)
RowBatch::RowBatch(const RowDescriptor& row_desc, const PRowBatch& input_batch)
: _has_in_flight_row(false),
_num_rows(input_batch.num_rows()),
_num_uncommitted_rows(0),
_capacity(_num_rows),
_flush(FlushMode::NO_FLUSH_RESOURCES),
_needs_deep_copy(false),
_num_tuples_per_row(input_batch.row_tuples_size()),
_row_desc(row_desc),
_auxiliary_mem_usage(0),
_need_to_return(false) {
_tuple_ptrs_size = _num_rows * _num_tuples_per_row * sizeof(Tuple*);
DCHECK_GT(_tuple_ptrs_size, 0);
_tuple_ptrs = (Tuple**)(malloc(_tuple_ptrs_size));
DCHECK(_tuple_ptrs != nullptr);
char* tuple_data = nullptr;
if (input_batch.is_compressed()) {
// Decompress tuple data into data pool
const char* compressed_data = input_batch.tuple_data().c_str();
size_t compressed_size = input_batch.tuple_data().size();
size_t uncompressed_size = 0;
bool success =
snappy::GetUncompressedLength(compressed_data, compressed_size, &uncompressed_size);
DCHECK(success) << "snappy::GetUncompressedLength failed";
tuple_data = (char*)_tuple_data_pool.allocate(uncompressed_size);
success = snappy::RawUncompress(compressed_data, compressed_size, tuple_data);
DCHECK(success) << "snappy::RawUncompress failed";
} else {
// Tuple data uncompressed, copy directly into data pool
tuple_data = (char*)_tuple_data_pool.allocate(input_batch.tuple_data().size());
memcpy(tuple_data, input_batch.tuple_data().c_str(), input_batch.tuple_data().size());
}
// convert input_batch.tuple_offsets into pointers
int tuple_idx = 0;
// For historical reasons, the original offset was stored using int32,
// so that if a rowbatch is larger than 2GB, the passed offset may generate an error due to value overflow.
// So in the new version, a new_tuple_offsets structure is added to store offsets using int64.
// Here, to maintain compatibility, both versions of offsets are used, with preference given to new_tuple_offsets.
// TODO(cmy): in the next version, the original tuple_offsets should be removed.
if (input_batch.new_tuple_offsets_size() > 0) {
for (int64_t offset : input_batch.new_tuple_offsets()) {
if (offset == -1) {
_tuple_ptrs[tuple_idx++] = nullptr;
} else {
_tuple_ptrs[tuple_idx++] = convert_to<Tuple*>(tuple_data + offset);
}
}
} else {
for (int32_t offset : input_batch.tuple_offsets()) {
if (offset == -1) {
_tuple_ptrs[tuple_idx++] = nullptr;
} else {
_tuple_ptrs[tuple_idx++] = convert_to<Tuple*>(tuple_data + offset);
}
}
}
// Check whether we have slots that require offset-to-pointer conversion.
if (!_row_desc.has_varlen_slots()) {
return;
}
const auto& tuple_descs = _row_desc.tuple_descriptors();
// For every unique tuple, convert string offsets contained in tuple data into
// pointers. Tuples were serialized in the order we are deserializing them in,
// so the first occurrence of a tuple will always have a higher offset than any tuple
// we already converted.
for (int i = 0; i < _num_rows; ++i) {
TupleRow* row = get_row(i);
for (size_t j = 0; j < tuple_descs.size(); ++j) {
auto desc = tuple_descs[j];
if (desc->string_slots().empty() && desc->collection_slots().empty()) {
continue;
}
Tuple* tuple = row->get_tuple(j);
if (tuple == nullptr) {
continue;
}
for (auto slot : desc->string_slots()) {
DCHECK(slot->type().is_string_type());
if (tuple->is_null(slot->null_indicator_offset())) {
continue;
}
StringValue* string_val = tuple->get_string_slot(slot->tuple_offset());
int64_t offset = convert_to<int64_t>(string_val->ptr);
string_val->ptr = tuple_data + offset;
// Why we do this mask? Field len of StringValue is changed from int to size_t in
// Doris 0.11. When upgrading, some bits of len sent from 0.10 is random value,
// this works fine in version 0.10, however in 0.11 this will lead to an invalid
// length. So we make the high bits zero here.
string_val->len &= 0x7FFFFFFFL;
}
// copy collection slots
for (auto slot_collection : desc->collection_slots()) {
DCHECK(slot_collection->type().is_collection_type());
if (tuple->is_null(slot_collection->null_indicator_offset())) {
continue;
}
CollectionValue* array_val =
tuple->get_collection_slot(slot_collection->tuple_offset());
const auto& item_type_desc = slot_collection->type().children[0];
CollectionValue::deserialize_collection(array_val, tuple_data, item_type_desc);
}
}
}
}
void RowBatch::clear() {
if (_cleared) {
return;
}
_tuple_data_pool.free_all();
_agg_object_pool.clear();
for (int i = 0; i < _io_buffers.size(); ++i) {
_io_buffers[i]->return_buffer();
}
for (BufferInfo& buffer_info : _buffers) {
ExecEnv::GetInstance()->buffer_pool()->FreeBuffer(buffer_info.client, &buffer_info.buffer);
}
close_tuple_streams();
for (int i = 0; i < _blocks.size(); ++i) {
_blocks[i]->del();
}
DCHECK(_tuple_ptrs != nullptr);
free(_tuple_ptrs);
_tuple_ptrs = nullptr;
_cleared = true;
}
RowBatch::~RowBatch() {
clear();
}
static inline size_t align_tuple_offset(size_t offset) {
if (config::rowbatch_align_tuple_offset) {
return (offset + alignof(std::max_align_t) - 1) & (~(alignof(std::max_align_t) - 1));
}
return offset;
}
Status RowBatch::serialize(PRowBatch* output_batch, size_t* uncompressed_size,
size_t* compressed_size, bool allow_transfer_large_data) {
// num_rows
output_batch->set_num_rows(_num_rows);
// row_tuples
_row_desc.to_protobuf(output_batch->mutable_row_tuples());
// tuple_offsets: must clear before reserve
// TODO(cmy): the tuple_offsets should be removed after v1.1.0, use new_tuple_offsets instead.
// keep tuple_offsets here is just for compatibility.
output_batch->clear_tuple_offsets();
output_batch->mutable_tuple_offsets()->Reserve(_num_rows * _num_tuples_per_row);
output_batch->clear_new_tuple_offsets();
output_batch->mutable_new_tuple_offsets()->Reserve(_num_rows * _num_tuples_per_row);
// is_compressed
output_batch->set_is_compressed(false);
// tuple data
size_t tuple_byte_size = total_byte_size();
std::string* mutable_tuple_data = output_batch->mutable_tuple_data();
mutable_tuple_data->resize(tuple_byte_size);
// Copy tuple data, including strings, into output_batch (converting string
// pointers into offsets in the process)
int64_t offset = 0; // current offset into output_batch->tuple_data
char* tuple_data = mutable_tuple_data->data();
const auto& tuple_descs = _row_desc.tuple_descriptors();
const auto& mutable_tuple_offsets = output_batch->mutable_tuple_offsets();
const auto& mutable_new_tuple_offsets = output_batch->mutable_new_tuple_offsets();
for (int i = 0; i < _num_rows; ++i) {
TupleRow* row = get_row(i);
for (size_t j = 0; j < tuple_descs.size(); ++j) {
auto desc = tuple_descs[j];
if (row->get_tuple(j) == nullptr) {
// NULLs are encoded as -1
mutable_tuple_offsets->Add(-1);
mutable_new_tuple_offsets->Add(-1);
continue;
}
int64_t old_offset = offset;
offset = align_tuple_offset(offset);
tuple_data += offset - old_offset;
// Record offset before creating copy (which increments offset and tuple_data)
mutable_tuple_offsets->Add((int32_t)offset);
mutable_new_tuple_offsets->Add(offset);
row->get_tuple(j)->deep_copy(*desc, &tuple_data, &offset, /* convert_ptrs */ true);
CHECK_GE(offset, 0);
}
}
CHECK_EQ(offset, tuple_byte_size)
<< "offset: " << offset << " vs. tuple_byte_size: " << tuple_byte_size;
size_t max_compressed_size = snappy::MaxCompressedLength(tuple_byte_size);
bool can_compress = config::compress_rowbatches && tuple_byte_size > 0;
if (can_compress) {
try {
// Allocation of extra-long contiguous memory may fail, and data compression cannot be used if it fails
_compression_scratch.resize(max_compressed_size);
} catch (...) {
can_compress = false;
std::exception_ptr p = std::current_exception();
LOG(WARNING) << "Try to alloc " << max_compressed_size
<< " bytes for compression scratch failed. "
<< get_current_exception_type_name(p);
}
}
if (can_compress) {
// Try compressing tuple_data to _compression_scratch, swap if compressed data is
// smaller
size_t compressed_size = 0;
char* compressed_output = _compression_scratch.data();
snappy::RawCompress(mutable_tuple_data->data(), tuple_byte_size, compressed_output,
&compressed_size);
if (LIKELY(compressed_size < tuple_byte_size)) {
_compression_scratch.resize(compressed_size);
mutable_tuple_data->swap(_compression_scratch);
output_batch->set_is_compressed(true);
}
VLOG_ROW << "uncompressed tuple_byte_size: " << tuple_byte_size
<< ", compressed size: " << compressed_size;
}
// return compressed and uncompressed size
size_t pb_size = get_batch_size(*output_batch);
*uncompressed_size = pb_size - mutable_tuple_data->size() + tuple_byte_size;
*compressed_size = pb_size;
if (!allow_transfer_large_data && pb_size > std::numeric_limits<int32_t>::max()) {
// the protobuf has a hard limit of 2GB for serialized data.
return Status::InternalError(
"The rowbatch is large than 2GB({}), can not send by Protobuf.", pb_size);
}
return Status::OK();
}
// when row from files can't fill into tuple with schema limitation, increase the _num_uncommitted_rows in row batch,
void RowBatch::increase_uncommitted_rows() {
_num_uncommitted_rows++;
}
void RowBatch::add_io_buffer(DiskIoMgr::BufferDescriptor* buffer) {
DCHECK(buffer != nullptr);
_io_buffers.push_back(buffer);
_auxiliary_mem_usage += buffer->buffer_len();
}
Status RowBatch::resize_and_allocate_tuple_buffer(RuntimeState* state, int64_t* tuple_buffer_size,
uint8_t** buffer) {
int64_t row_size = _row_desc.get_row_size();
// Avoid divide-by-zero. Don't need to modify capacity for empty rows anyway.
if (row_size != 0) {
_capacity = std::max(1, std::min<int>(_capacity, FIXED_LEN_BUFFER_LIMIT / row_size));
}
*tuple_buffer_size = row_size * _capacity;
// TODO(dhc): change allocate to try_allocate?
*buffer = _tuple_data_pool.allocate(*tuple_buffer_size);
if (*buffer == nullptr) {
std::stringstream ss;
ss << "Failed to allocate tuple buffer" << *tuple_buffer_size;
LOG(WARNING) << ss.str();
return state->set_mem_limit_exceeded(ss.str());
}
return Status::OK();
}
void RowBatch::add_tuple_stream(BufferedTupleStream2* stream) {
DCHECK(stream != nullptr);
_tuple_streams.push_back(stream);
_auxiliary_mem_usage += stream->byte_size();
}
void RowBatch::add_block(BufferedBlockMgr2::Block* block) {
DCHECK(block != nullptr);
_blocks.push_back(block);
_auxiliary_mem_usage += block->buffer_len();
}
void RowBatch::reset() {
_num_rows = 0;
_capacity = _tuple_ptrs_size / (_num_tuples_per_row * sizeof(Tuple*));
_has_in_flight_row = false;
// TODO: Change this to Clear() and investigate the repercussions.
_tuple_data_pool.free_all();
_agg_object_pool.clear();
for (int i = 0; i < _io_buffers.size(); ++i) {
_io_buffers[i]->return_buffer();
}
_io_buffers.clear();
for (BufferInfo& buffer_info : _buffers) {
ExecEnv::GetInstance()->buffer_pool()->FreeBuffer(buffer_info.client, &buffer_info.buffer);
}
_buffers.clear();
close_tuple_streams();
for (int i = 0; i < _blocks.size(); ++i) {
_blocks[i]->del();
}
_blocks.clear();
_auxiliary_mem_usage = 0;
_need_to_return = false;
_flush = FlushMode::NO_FLUSH_RESOURCES;
_needs_deep_copy = false;
}
void RowBatch::close_tuple_streams() {
for (int i = 0; i < _tuple_streams.size(); ++i) {
_tuple_streams[i]->close();
delete _tuple_streams[i];
}
_tuple_streams.clear();
}
void RowBatch::transfer_resource_ownership(RowBatch* dest) {
dest->_auxiliary_mem_usage += _tuple_data_pool.total_allocated_bytes();
dest->_tuple_data_pool.acquire_data(&_tuple_data_pool, false);
dest->_agg_object_pool.acquire_data(&_agg_object_pool);
for (int i = 0; i < _io_buffers.size(); ++i) {
DiskIoMgr::BufferDescriptor* buffer = _io_buffers[i];
dest->_io_buffers.push_back(buffer);
dest->_auxiliary_mem_usage += buffer->buffer_len();
}
_io_buffers.clear();
for (BufferInfo& buffer_info : _buffers) {
dest->add_buffer(buffer_info.client, std::move(buffer_info.buffer),
FlushMode::NO_FLUSH_RESOURCES);
}
_buffers.clear();
for (int i = 0; i < _tuple_streams.size(); ++i) {
dest->_tuple_streams.push_back(_tuple_streams[i]);
dest->_auxiliary_mem_usage += _tuple_streams[i]->byte_size();
}
// Resource release should be done by dest RowBatch. if we don't clear the corresponding resources.
// This Rowbatch calls the reset() method, dest Rowbatch will also call the reset() method again,
// which will cause the core problem of double delete
_tuple_streams.clear();
for (int i = 0; i < _blocks.size(); ++i) {
dest->_blocks.push_back(_blocks[i]);
dest->_auxiliary_mem_usage += _blocks[i]->buffer_len();
}
_blocks.clear();
dest->_need_to_return |= _need_to_return;
if (_needs_deep_copy) {
dest->mark_needs_deep_copy();
} else if (_flush == FlushMode::FLUSH_RESOURCES) {
dest->mark_flush_resources();
}
reset();
}
vectorized::Block RowBatch::convert_to_vec_block() const {
std::vector<vectorized::MutableColumnPtr> columns;
for (const auto tuple_desc : _row_desc.tuple_descriptors()) {
for (const auto slot_desc : tuple_desc->slots()) {
columns.emplace_back(slot_desc->get_empty_mutable_column());
}
}
std::vector<SlotDescriptor*> slot_descs;
std::vector<int> tuple_idx;
int column_numbers = 0;
for (int i = 0; i < _row_desc.tuple_descriptors().size(); ++i) {
auto tuple_desc = _row_desc.tuple_descriptors()[i];
for (int j = 0; j < tuple_desc->slots().size(); ++j) {
slot_descs.push_back(tuple_desc->slots()[j]);
tuple_idx.push_back(i);
}
column_numbers += tuple_desc->slots().size();
}
for (int i = 0; i < column_numbers; ++i) {
auto slot_desc = slot_descs[i];
for (int j = 0; j < _num_rows; ++j) {
TupleRow* src_row = get_row(j);
auto tuple = src_row->get_tuple(tuple_idx[i]);
if (slot_desc->is_nullable() && tuple->is_null(slot_desc->null_indicator_offset())) {
columns[i]->insert_data(nullptr, 0);
} else if (slot_desc->type().is_string_type()) {
auto string_value =
static_cast<const StringValue*>(tuple->get_slot(slot_desc->tuple_offset()));
columns[i]->insert_data(string_value->ptr, string_value->len);
} else {
columns[i]->insert_data(
static_cast<const char*>(tuple->get_slot(slot_desc->tuple_offset())),
slot_desc->slot_size());
}
}
}
doris::vectorized::ColumnsWithTypeAndName columns_with_type_and_name;
auto n_columns = 0;
for (const auto tuple_desc : _row_desc.tuple_descriptors()) {
for (const auto slot_desc : tuple_desc->slots()) {
columns_with_type_and_name.emplace_back(columns[n_columns++]->get_ptr(),
slot_desc->get_data_type_ptr(),
slot_desc->col_name());
}
}
return {columns_with_type_and_name};
}
size_t RowBatch::get_batch_size(const PRowBatch& batch) {
size_t result = batch.tuple_data().size();
result += batch.row_tuples().size() * sizeof(int32_t);
// TODO(cmy): remove batch.tuple_offsets
result += batch.tuple_offsets().size() * sizeof(int32_t);
result += batch.new_tuple_offsets().size() * sizeof(int64_t);
return result;
}
void RowBatch::acquire_state(RowBatch* src) {
// DCHECK(_row_desc.equals(src->_row_desc));
DCHECK_EQ(_num_tuples_per_row, src->_num_tuples_per_row);
// DCHECK_EQ(_tuple_ptrs_size, src->_tuple_ptrs_size);
DCHECK_EQ(_auxiliary_mem_usage, 0);
// The destination row batch should be empty.
DCHECK(!_has_in_flight_row);
DCHECK_EQ(_num_rows, 0);
for (int i = 0; i < src->_io_buffers.size(); ++i) {
DiskIoMgr::BufferDescriptor* buffer = src->_io_buffers[i];
_io_buffers.push_back(buffer);
_auxiliary_mem_usage += buffer->buffer_len();
}
src->_io_buffers.clear();
src->_auxiliary_mem_usage = 0;
DCHECK(src->_tuple_streams.empty());
DCHECK(src->_blocks.empty());
_has_in_flight_row = src->_has_in_flight_row;
_num_rows = src->_num_rows;
_capacity = src->_capacity;
_need_to_return = src->_need_to_return;
// tuple_ptrs_ were allocated with malloc so can be swapped between batches.
std::swap(_tuple_ptrs, src->_tuple_ptrs);
src->transfer_resource_ownership(this);
}
void RowBatch::deep_copy_to(RowBatch* dst) {
DCHECK(dst->_row_desc.equals(_row_desc));
DCHECK_EQ(dst->_num_rows, 0);
DCHECK_GE(dst->_capacity, _num_rows);
dst->add_rows(_num_rows);
for (int i = 0; i < _num_rows; ++i) {
TupleRow* src_row = get_row(i);
TupleRow* dst_row = convert_to<TupleRow*>(dst->_tuple_ptrs + i * _num_tuples_per_row);
src_row->deep_copy(dst_row, _row_desc.tuple_descriptors(), &dst->_tuple_data_pool, false);
}
dst->commit_rows(_num_rows);
}
// TODO: consider computing size of batches as they are built up
size_t RowBatch::total_byte_size() const {
size_t result = 0;
// Sum total variable length byte sizes.
for (int i = 0; i < _num_rows; ++i) {
TupleRow* row = get_row(i);
const auto& tuple_descs = _row_desc.tuple_descriptors();
for (size_t j = 0; j < tuple_descs.size(); ++j) {
auto desc = tuple_descs[j];
Tuple* tuple = row->get_tuple(j);
if (tuple == nullptr) {
continue;
}
result = align_tuple_offset(result);
result += desc->byte_size();
for (auto slot : desc->string_slots()) {
DCHECK(slot->type().is_string_type());
if (tuple->is_null(slot->null_indicator_offset())) {
continue;
}
StringValue* string_val = tuple->get_string_slot(slot->tuple_offset());
result += string_val->len;
}
// compute slot collection size
for (auto slot_collection : desc->collection_slots()) {
DCHECK(slot_collection->type().is_collection_type());
if (tuple->is_null(slot_collection->null_indicator_offset())) {
continue;
}
CollectionValue* array_val =
tuple->get_collection_slot(slot_collection->tuple_offset());
const auto& item_type_desc = slot_collection->type().children[0];
result += array_val->get_byte_size(item_type_desc);
}
}
}
return result;
}
void RowBatch::add_buffer(BufferPool::ClientHandle* client, BufferPool::BufferHandle&& buffer,
FlushMode flush) {
_auxiliary_mem_usage += buffer.len();
BufferInfo buffer_info;
buffer_info.client = client;
buffer_info.buffer = std::move(buffer);
_buffers.push_back(std::move(buffer_info));
if (flush == FlushMode::FLUSH_RESOURCES) mark_flush_resources();
}
std::string RowBatch::to_string() {
std::stringstream out;
for (int i = 0; i < _num_rows; ++i) {
out << get_row(i)->to_string(_row_desc) << "\n";
}
return out.str();
}
} // end namespace doris