blob: 5011cf3f40523aa6ecfe0eeb2956fd9cc7fd9b17 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*/
package org.apache.directory.server.core.authn;
import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
import javax.naming.Context;
import org.apache.commons.collections.map.LRUMap;
import org.apache.commons.lang.ArrayUtils;
import org.apache.directory.server.core.LdapPrincipal;
import org.apache.directory.server.core.authz.AciAuthorizationInterceptor;
import org.apache.directory.server.core.authz.DefaultAuthorizationInterceptor;
import org.apache.directory.server.core.collective.CollectiveAttributeInterceptor;
import org.apache.directory.server.core.event.EventInterceptor;
import org.apache.directory.server.core.exception.ExceptionInterceptor;
import org.apache.directory.server.core.interceptor.context.BindOperationContext;
import org.apache.directory.server.core.interceptor.context.LookupOperationContext;
import org.apache.directory.server.core.normalization.NormalizationInterceptor;
import org.apache.directory.server.core.operational.OperationalAttributeInterceptor;
import org.apache.directory.server.core.schema.SchemaInterceptor;
import org.apache.directory.server.core.subtree.SubentryInterceptor;
import org.apache.directory.server.core.trigger.TriggerInterceptor;
import org.apache.directory.server.i18n.I18n;
import org.apache.directory.shared.ldap.constants.AuthenticationLevel;
import org.apache.directory.shared.ldap.constants.LdapSecurityConstants;
import org.apache.directory.shared.ldap.constants.SchemaConstants;
import org.apache.directory.shared.ldap.entry.EntryAttribute;
import org.apache.directory.shared.ldap.entry.Entry;
import org.apache.directory.shared.ldap.entry.Value;
import org.apache.directory.shared.ldap.exception.LdapAuthenticationException;
import org.apache.directory.shared.ldap.name.DN;
import org.apache.directory.shared.ldap.util.Base64;
import org.apache.directory.shared.ldap.util.StringTools;
import org.apache.directory.shared.ldap.util.UnixCrypt;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* A simple {@link Authenticator} that authenticates clear text passwords
* contained within the <code>userPassword</code> attribute in DIT. If the
* password is stored with a one-way encryption applied (e.g. SHA), the password
* is hashed the same way before comparison.
*
* We use a cache to speedup authentication, where the DN/password are stored.
*
* @author <a href="mailto:dev@directory.apache.org">Apache Directory Project</a>
*/
public class SimpleAuthenticator extends AbstractAuthenticator
{
private static final Logger LOG = LoggerFactory.getLogger( SimpleAuthenticator.class );
/** A speedup for logger in debug mode */
private static final boolean IS_DEBUG = LOG.isDebugEnabled();
/** The SHA1 hash length */
private static final int SHA1_LENGTH = 20;
/** The MD5 hash length */
private static final int MD5_LENGTH = 16;
/**
* A cache to store passwords. It's a speedup, we will be able to avoid backend lookups.
*
* Note that the backend also use a cache mechanism, but for performance gain, it's good
* to manage a cache here. The main problem is that when a user modify his password, we will
* have to update it at three different places :
* - in the backend,
* - in the partition cache,
* - in this cache.
*
* The update of the backend and partition cache is already correctly handled, so we will
* just have to offer an access to refresh the local cache.
*
* We need to be sure that frequently used passwords be always in cache, and not discarded.
* We will use a LRU cache for this purpose.
*/
private final LRUMap credentialCache;
/** Declare a default for this cache. 100 entries seems to be enough */
private static final int DEFAULT_CACHE_SIZE = 100;
/**
* Define the interceptors we should *not* go through when we will have to request the backend
* about a userPassword.
*/
private static final Collection<String> USERLOOKUP_BYPASS;
static
{
Set<String> c = new HashSet<String>();
c.add( NormalizationInterceptor.class.getName() );
c.add( AuthenticationInterceptor.class.getName() );
c.add( AciAuthorizationInterceptor.class.getName() );
c.add( DefaultAuthorizationInterceptor.class.getName() );
c.add( ExceptionInterceptor.class.getName() );
c.add( OperationalAttributeInterceptor.class.getName() );
c.add( SchemaInterceptor.class.getName() );
c.add( SubentryInterceptor.class.getName() );
c.add( CollectiveAttributeInterceptor.class.getName() );
c.add( EventInterceptor.class.getName() );
c.add( TriggerInterceptor.class.getName() );
USERLOOKUP_BYPASS = Collections.unmodifiableCollection( c );
}
/**
* Creates a new instance.
* @see AbstractAuthenticator
*/
public SimpleAuthenticator()
{
super( AuthenticationLevel.SIMPLE.toString() );
credentialCache = new LRUMap( DEFAULT_CACHE_SIZE );
}
/**
* Creates a new instance, with an initial cache size
* @param cacheSize the size of the credential cache
*/
public SimpleAuthenticator( int cacheSize )
{
super( AuthenticationLevel.SIMPLE.toString() );
credentialCache = new LRUMap( cacheSize > 0 ? cacheSize : DEFAULT_CACHE_SIZE );
}
/**
* A private class to store all informations about the existing
* password found in the cache or get from the backend.
*
* This is necessary as we have to compute :
* - the used algorithm
* - the salt if any
* - the password itself.
*
* If we have a on-way encrypted password, it is stored using this
* format :
* {<algorithm>}<encrypted password>
* where the encrypted password format can be :
* - MD5/SHA : base64([<salt (4 or 8 bytes)>]<password>)
* - crypt : <salt (2 btytes)><password>
*
* Algorithm are currently MD5, SMD5, SHA, SSHA, CRYPT and empty
*/
private class EncryptionMethod
{
private byte[] salt;
private LdapSecurityConstants algorithm;
private EncryptionMethod( LdapSecurityConstants algorithm, byte[] salt )
{
this.algorithm = algorithm;
this.salt = salt;
}
}
/**
* Get the password either from cache or from backend.
* @param principalDN The DN from which we want the password
* @return A byte array which can be empty if the password was not found
* @throws Exception If we have a problem during the lookup operation
*/
private LdapPrincipal getStoredPassword( BindOperationContext opContext ) throws Exception
{
LdapPrincipal principal = null;
synchronized ( credentialCache )
{
principal = ( LdapPrincipal ) credentialCache.get( opContext.getDn().getNormName() );
}
byte[] storedPassword;
if ( principal == null )
{
// Not found in the cache
// Get the user password from the backend
storedPassword = lookupUserPassword( opContext );
// Deal with the special case where the user didn't enter a password
// We will compare the empty array with the credentials. Sometime,
// a user does not set a password. This is bad, but there is nothing
// we can do against that, except education ...
if ( storedPassword == null )
{
storedPassword = ArrayUtils.EMPTY_BYTE_ARRAY;
}
// Create the new principal before storing it in the cache
principal = new LdapPrincipal( opContext.getDn(), AuthenticationLevel.SIMPLE, storedPassword );
// Now, update the local cache.
synchronized ( credentialCache )
{
credentialCache.put( opContext.getDn().getNormName(), principal );
}
}
return principal;
}
/**
* <p>
* Looks up <tt>userPassword</tt> attribute of the entry whose name is the
* value of {@link Context#SECURITY_PRINCIPAL} environment variable, and
* authenticates a user with the plain-text password.
* </p>
* We have at least 6 algorithms to encrypt the password :
* <ul>
* <li>- SHA</li>
* <li>- SHA-256</li>
* <li>- SSHA (salted SHA)</li>
* <li>- MD5</li>
* <li>- SMD5 (slated MD5)</li>
* <li>- crypt (unix crypt)</li>
* <li>- plain text, ie no encryption.</li>
* </ul>
* <p>
* If we get an encrypted password, it is prefixed by the used algorithm, between
* brackets : {SSHA}password ...
* </p>
* If the password is using SSHA, SMD5 or crypt, some 'salt' is added to the password :
* <ul>
* <li>- length(password) - 20, starting at 21th position for SSHA</li>
* <li>- length(password) - 16, starting at 16th position for SMD5</li>
* <li>- length(password) - 2, starting at 3rd position for crypt</li>
* </ul>
* <p>
* For (S)SHA, SHA-256 and (S)MD5, we have to transform the password from Base64 encoded text
* to a byte[] before comparing the password with the stored one.
* </p>
* <p>
* For crypt, we only have to remove the salt.
* </p>
* <p>
* At the end, we use the digest() method for (S)SHA and (S)MD5, the crypt() method for
* the CRYPT algorithm and a straight comparison for PLAIN TEXT passwords.
* </p>
* <p>
* The stored password is always using the unsalted form, and is stored as a bytes array.
* </p>
*/
public LdapPrincipal authenticate( BindOperationContext opContext ) throws Exception
{
if ( IS_DEBUG )
{
LOG.debug( "Authenticating {}", opContext.getDn() );
}
// ---- extract password from JNDI environment
byte[] credentials = opContext.getCredentials();
LdapPrincipal principal = getStoredPassword( opContext );
// Get the stored password, either from cache or from backend
byte[] storedPassword = principal.getUserPassword();
// Short circuit for PLAIN TEXT passwords : we compare the byte array directly
// Are the passwords equal ?
if ( Arrays.equals( credentials, storedPassword ) )
{
if ( IS_DEBUG )
{
LOG.debug( "{} Authenticated", opContext.getDn() );
}
return principal;
}
// Let's see if the stored password was encrypted
LdapSecurityConstants algorithm = findAlgorithm( storedPassword );
if ( algorithm != null )
{
EncryptionMethod encryptionMethod = new EncryptionMethod( algorithm, null );
// Let's get the encrypted part of the stored password
// We should just keep the password, excluding the algorithm
// and the salt, if any.
// But we should also get the algorithm and salt to
// be able to encrypt the submitted user password in the next step
byte[] encryptedStored = splitCredentials( storedPassword, encryptionMethod );
// Reuse the saltedPassword informations to construct the encrypted
// password given by the user.
byte[] userPassword = encryptPassword( credentials, encryptionMethod );
// Now, compare the two passwords.
if ( Arrays.equals( userPassword, encryptedStored ) )
{
if ( IS_DEBUG )
{
LOG.debug( "{} Authenticated", opContext.getDn() );
}
return principal;
}
else
{
// Bad password ...
String message = I18n.err( I18n.ERR_230, opContext.getDn().getName() );
LOG.info( message );
throw new LdapAuthenticationException( message );
}
}
else
{
// Bad password ...
String message = I18n.err( I18n.ERR_230, opContext.getDn().getName() );
LOG.info( message );
throw new LdapAuthenticationException( message );
}
}
private static void split( byte[] all, int offset, byte[] left, byte[] right )
{
System.arraycopy( all, offset, left, 0, left.length );
System.arraycopy( all, offset + left.length, right, 0, right.length );
}
/**
* Decompose the stored password in an algorithm, an eventual salt
* and the password itself.
*
* If the algorithm is SHA, SSHA, MD5 or SMD5, the part following the algorithm
* is base64 encoded
*
* @param encryptionMethod The structure to feed
* @return The password
* @param credentials the credentials to split
*/
private byte[] splitCredentials( byte[] credentials, EncryptionMethod encryptionMethod )
{
int algoLength = encryptionMethod.algorithm.getName().length() + 2;
switch ( encryptionMethod.algorithm )
{
case HASH_METHOD_MD5:
case HASH_METHOD_SHA:
case HASH_METHOD_SHA256:
try
{
// We just have the password just after the algorithm, base64 encoded.
// Just decode the password and return it.
return Base64
.decode( new String( credentials, algoLength, credentials.length - algoLength, "UTF-8" )
.toCharArray() );
}
catch ( UnsupportedEncodingException uee )
{
// do nothing
return credentials;
}
case HASH_METHOD_SMD5:
try
{
// The password is associated with a salt. Decompose it
// in two parts, after having decoded the password.
// The salt will be stored into the EncryptionMethod structure
// The salt is at the end of the credentials, and is 8 bytes long
byte[] passwordAndSalt = Base64.decode( new String( credentials, algoLength, credentials.length
- algoLength, "UTF-8" ).toCharArray() );
int saltLength = passwordAndSalt.length - MD5_LENGTH;
encryptionMethod.salt = new byte[saltLength];
byte[] password = new byte[MD5_LENGTH];
split( passwordAndSalt, 0, password, encryptionMethod.salt );
return password;
}
catch ( UnsupportedEncodingException uee )
{
// do nothing
return credentials;
}
case HASH_METHOD_SSHA:
try
{
// The password is associated with a salt. Decompose it
// in two parts, after having decoded the password.
// The salt will be stored into the EncryptionMethod structure
// The salt is at the end of the credentials, and is 8 bytes long
byte[] passwordAndSalt = Base64.decode( new String( credentials, algoLength, credentials.length
- algoLength, "UTF-8" ).toCharArray() );
int saltLength = passwordAndSalt.length - SHA1_LENGTH;
encryptionMethod.salt = new byte[saltLength];
byte[] password = new byte[SHA1_LENGTH];
split( passwordAndSalt, 0, password, encryptionMethod.salt );
return password;
}
catch ( UnsupportedEncodingException uee )
{
// do nothing
return credentials;
}
case HASH_METHOD_CRYPT:
// The password is associated with a salt. Decompose it
// in two parts, storing the salt into the EncryptionMethod structure.
// The salt comes first, not like for SSHA and SMD5, and is 2 bytes long
encryptionMethod.salt = new byte[2];
byte[] password = new byte[credentials.length - encryptionMethod.salt.length - algoLength];
split( credentials, algoLength, encryptionMethod.salt, password );
return password;
default:
// unknown method
return credentials;
}
}
/**
* Get the algorithm from the stored password.
* It can be found on the beginning of the stored password, between
* curly brackets.
* @param credentials the credentials of the user
* @return the name of the algorithm to use
* TODO use an enum for the algorithm
*/
private LdapSecurityConstants findAlgorithm( byte[] credentials )
{
if ( ( credentials == null ) || ( credentials.length == 0 ) )
{
return null;
}
if ( credentials[0] == '{' )
{
// get the algorithm
int pos = 1;
while ( pos < credentials.length )
{
if ( credentials[pos] == '}' )
{
break;
}
pos++;
}
if ( pos < credentials.length )
{
if ( pos == 1 )
{
// We don't have an algorithm : return the credentials as is
return null;
}
String algorithm = new String( credentials, 1, pos - 1 ).toLowerCase();
return LdapSecurityConstants.getAlgorithm( algorithm );
}
else
{
// We don't have an algorithm
return null;
}
}
else
{
// No '{algo}' part
return null;
}
}
/**
* Compute the hashed password given an algorithm, the credentials and
* an optional salt.
*
* @param algorithm the algorithm to use
* @param password the credentials
* @param salt the optional salt
* @return the digested credentials
*/
private static byte[] digest( LdapSecurityConstants algorithm, byte[] password, byte[] salt )
{
MessageDigest digest;
try
{
digest = MessageDigest.getInstance( algorithm.getName() );
}
catch ( NoSuchAlgorithmException e1 )
{
return null;
}
if ( salt != null )
{
digest.update( password );
digest.update( salt );
return digest.digest();
}
else
{
return digest.digest( password );
}
}
private byte[] encryptPassword( byte[] credentials, EncryptionMethod encryptionMethod )
{
byte[] salt = encryptionMethod.salt;
switch ( encryptionMethod.algorithm )
{
case HASH_METHOD_SHA:
case HASH_METHOD_SSHA:
return digest( LdapSecurityConstants.HASH_METHOD_SHA, credentials, salt );
case HASH_METHOD_SHA256:
return digest( LdapSecurityConstants.HASH_METHOD_SHA256, credentials, salt );
case HASH_METHOD_MD5:
case HASH_METHOD_SMD5:
return digest( LdapSecurityConstants.HASH_METHOD_MD5, credentials, salt );
case HASH_METHOD_CRYPT:
if ( salt == null )
{
salt = new byte[2];
SecureRandom sr = new SecureRandom();
int i1 = sr.nextInt( 64 );
int i2 = sr.nextInt( 64 );
salt[0] = ( byte ) ( i1 < 12 ? ( i1 + '.' ) : i1 < 38 ? ( i1 + 'A' - 12 ) : ( i1 + 'a' - 38 ) );
salt[1] = ( byte ) ( i2 < 12 ? ( i2 + '.' ) : i2 < 38 ? ( i2 + 'A' - 12 ) : ( i2 + 'a' - 38 ) );
}
String saltWithCrypted = UnixCrypt.crypt( StringTools.utf8ToString( credentials ), StringTools
.utf8ToString( salt ) );
String crypted = saltWithCrypted.substring( 2 );
return StringTools.getBytesUtf8( crypted );
default:
return credentials;
}
}
/**
* Local function which request the password from the backend
* @param principalDn the principal to lookup
* @return the credentials from the backend
* @throws Exception if there are problems accessing backend
*/
private byte[] lookupUserPassword( BindOperationContext opContext ) throws Exception
{
// ---- lookup the principal entry's userPassword attribute
Entry userEntry;
try
{
/*
* NOTE: at this point the BindOperationContext does not has a
* null session since the user has not yet authenticated so we
* cannot use opContext.lookup() yet. This is a very special
* case where we cannot rely on the opContext to perform a new
* sub operation.
*/
LookupOperationContext lookupContext = new LookupOperationContext( getDirectoryService().getAdminSession(),
opContext.getDn() );
lookupContext.setByPassed( USERLOOKUP_BYPASS );
userEntry = getDirectoryService().getOperationManager().lookup( lookupContext );
if ( userEntry == null )
{
DN dn = opContext.getDn();
String upDn = ( dn == null ? "" : dn.getName() );
throw new LdapAuthenticationException( I18n.err( I18n.ERR_231, upDn ) );
}
}
catch ( Exception cause )
{
LOG.error( I18n.err( I18n.ERR_6, cause.getLocalizedMessage() ) );
LdapAuthenticationException e = new LdapAuthenticationException( cause.getLocalizedMessage() );
e.initCause( e );
throw e;
}
Value<?> userPassword;
EntryAttribute userPasswordAttr = userEntry.get( SchemaConstants.USER_PASSWORD_AT );
// ---- assert that credentials match
if ( userPasswordAttr == null )
{
return StringTools.EMPTY_BYTES;
}
else
{
userPassword = userPasswordAttr.get();
return userPassword.getBytes();
}
}
/**
* Get the algorithm of a password, which is stored in the form "{XYZ}...".
* The method returns null, if the argument is not in this form. It returns
* XYZ, if XYZ is an algorithm known to the MessageDigest class of
* java.security.
*
* @param password a byte[]
* @return included message digest alorithm, if any
* @throws IllegalArgumentException if the algorithm cannot be identified
*/
protected String getAlgorithmForHashedPassword( byte[] password ) throws IllegalArgumentException
{
String result = null;
// Check if password arg is string or byte[]
String sPassword = StringTools.utf8ToString( password );
int rightParen = sPassword.indexOf( '}' );
if ( ( sPassword.length() > 2 ) && ( sPassword.charAt( 0 ) == '{' ) && ( rightParen > -1 ) )
{
String algorithm = sPassword.substring( 1, rightParen );
if ( LdapSecurityConstants.HASH_METHOD_CRYPT.getName().equalsIgnoreCase( algorithm ) )
{
return algorithm;
}
try
{
MessageDigest.getInstance( algorithm );
result = algorithm;
}
catch ( NoSuchAlgorithmException e )
{
LOG.warn( "Unknown message digest algorithm in password: " + algorithm, e );
}
}
return result;
}
/**
* Creates a digested password. For a given hash algorithm and a password
* value, the algorithm is applied to the password, and the result is Base64
* encoded. The method returns a String which looks like "{XYZ}bbbbbbb",
* whereas XYZ is the name of the algorithm, and bbbbbbb is the Base64
* encoded value of XYZ applied to the password.
*
* @param algorithm
* an algorithm which is supported by
* java.security.MessageDigest, e.g. SHA
* @param password
* password value, a byte[]
*
* @return a digested password, which looks like
* {SHA}LhkDrSoM6qr0fW6hzlfOJQW61tc=
*
* @throws IllegalArgumentException
* if password is neither a String nor a byte[], or algorithm is
* not known to java.security.MessageDigest class
*/
protected String createDigestedPassword( String algorithm, byte[] password ) throws IllegalArgumentException
{
// create message digest object
try
{
if ( LdapSecurityConstants.HASH_METHOD_CRYPT.getName().equalsIgnoreCase( algorithm ) )
{
String saltWithCrypted = UnixCrypt.crypt( StringTools.utf8ToString( password ), "" );
String crypted = saltWithCrypted.substring( 2 );
return '{' + algorithm + '}' + Arrays.toString( StringTools.getBytesUtf8( crypted ) );
}
else
{
MessageDigest digest = MessageDigest.getInstance( algorithm );
// calculate hashed value of password
byte[] fingerPrint = digest.digest( password );
char[] encoded = Base64.encode( fingerPrint );
// create return result of form "{alg}bbbbbbb"
return '{' + algorithm + '}' + new String( encoded );
}
}
catch ( NoSuchAlgorithmException nsae )
{
LOG.error( I18n.err( I18n.ERR_7, algorithm ) );
throw new IllegalArgumentException( nsae.getLocalizedMessage() );
}
}
/**
* Remove the principal form the cache. This is used when the user changes
* his password.
*/
public void invalidateCache( DN bindDn )
{
synchronized ( credentialCache )
{
credentialCache.remove( bindDn.getNormName() );
}
}
}