| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from typing import List, Optional, Tuple, Union |
| from py4j.java_gateway import JavaClass |
| from pyspark.sql.column import Column, _to_java_column # possibly fragile |
| from pyspark.sql.functions import lit |
| from pyspark.sql.utils import try_remote_functions |
| |
| from pyspark.sql.types import UserDefinedType, BinaryType |
| from datasketches import kll_doubles_sketch |
| |
| from .common import ( |
| ColumnOrName, |
| _invoke_function, |
| _invoke_function_over_columns, |
| _get_jvm_class, |
| _array_as_java_column |
| ) |
| |
| _kll_functions_class: JavaClass = None |
| |
| def _get_kll_functions_class() -> JavaClass: |
| global _kll_functions_class |
| if _kll_functions_class is None: |
| _kll_functions_class = _get_jvm_class("org.apache.spark.sql.datasketches.kll.functions") |
| return _kll_functions_class |
| |
| class KllDoublesSketchUDT(UserDefinedType): |
| """UDT to translate kll_doubles_sketch to/from spark""" |
| |
| @classmethod |
| def sqlType(cls): |
| return BinaryType() |
| |
| def serialize(self, sketch: kll_doubles_sketch) -> bytes: |
| if sketch is None: |
| return None |
| return sketch.serialize() |
| |
| def deserialize(self, data: bytes) -> kll_doubles_sketch: |
| if data is None: |
| return None |
| return kll_doubles_sketch.deserialize(bytes(data)) |
| |
| @classmethod |
| def module(cls): |
| return "datasketches" |
| |
| @classmethod |
| def scalaUDT(cls): |
| return "org.apache.spark.sql.datasketches.kll.KllDoublesSketchType" |
| |
| @try_remote_functions |
| def kll_sketch_double_agg_build(col: "ColumnOrName", k: Optional[Union[int, Column]] = None) -> Column: |
| if k is None: |
| return _invoke_function_over_columns(_get_kll_functions_class(), "kll_sketch_double_agg_build", col) |
| else: |
| _k = lit(k) if isinstance(k, int) else k |
| return _invoke_function_over_columns(_get_kll_functions_class(), "kll_sketch_double_agg_build", col, _k) |
| |
| @try_remote_functions |
| def kll_sketch_double_agg_merge(col: "ColumnOrName") -> Column: |
| return _invoke_function_over_columns(_get_kll_functions_class(), "kll_sketch_double_agg_merge", col) |
| |
| @try_remote_functions |
| def kll_sketch_double_get_min(col: "ColumnOrName") -> Column: |
| return _invoke_function(_get_kll_functions_class(), "kll_sketch_double_get_min", _to_java_column(col)) |
| |
| @try_remote_functions |
| def kll_sketch_double_get_max(col: "ColumnOrName") -> Column: |
| return _invoke_function(_get_kll_functions_class(), "kll_sketch_double_get_max", _to_java_column(col)) |
| |
| @try_remote_functions |
| def kll_sketch_double_get_pmf(col: "ColumnOrName", splitPoints: Union[List[float], Tuple[float], Column], isInclusive: bool = True) -> Column: |
| if isinstance(splitPoints, (list, tuple)): |
| splitPoints = _array_as_java_column(splitPoints) |
| elif isinstance(splitPoints, Column): |
| splitPoints = _to_java_column(splitPoints) |
| |
| return _invoke_function(_get_kll_functions_class(), "kll_sketch_double_get_pmf", col, splitPoints, isInclusive) |
| |
| @try_remote_functions |
| def kll_sketch_double_get_cdf(col: "ColumnOrName", splitPoints: Union[List[float], Column], isInclusive: bool = True) -> Column: |
| if isinstance(splitPoints, (list, tuple)): |
| splitPoints = _array_as_java_column(splitPoints) |
| elif isinstance(splitPoints, Column): |
| splitPoints = _to_java_column(splitPoints) |
| |
| return _invoke_function(_get_kll_functions_class(), "kll_sketch_double_get_cdf", col, splitPoints, isInclusive) |