blob: 011a78d738c9203e8f4854761936c2c60c3b3dba [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef KLL_HELPER_IMPL_HPP_
#define KLL_HELPER_IMPL_HPP_
#include <algorithm>
namespace datasketches {
bool kll_helper::is_even(uint32_t value) {
return (value & 1) == 0;
}
bool kll_helper::is_odd(uint32_t value) {
return (value & 1) > 0;
}
uint8_t kll_helper::floor_of_log2_of_fraction(uint64_t numer, uint64_t denom) {
if (denom > numer) return 0;
uint8_t count = 0;
while (true) {
denom <<= 1;
if (denom > numer) return count;
count++;
}
}
uint8_t kll_helper::ub_on_num_levels(uint64_t n) {
if (n == 0) return 1;
return 1 + floor_of_log2_of_fraction(n, 1);
}
uint32_t kll_helper::compute_total_capacity(uint16_t k, uint8_t m, uint8_t num_levels) {
uint32_t total = 0;
for (uint8_t h = 0; h < num_levels; h++) {
total += level_capacity(k, num_levels, h, m);
}
return total;
}
uint32_t kll_helper::level_capacity(uint16_t k, uint8_t numLevels, uint8_t height, uint8_t min_wid) {
if (height >= numLevels) throw std::invalid_argument("height >= numLevels");
const uint8_t depth = numLevels - height - 1;
return std::max((uint32_t) min_wid, int_cap_aux(k, depth));
}
uint32_t kll_helper::int_cap_aux(uint16_t k, uint8_t depth) {
if (depth > 60) throw std::invalid_argument("depth > 60");
if (depth <= 30) return int_cap_aux_aux(k, depth);
const uint8_t half = depth / 2;
const uint8_t rest = depth - half;
const uint32_t tmp = int_cap_aux_aux(k, half);
return int_cap_aux_aux(tmp, rest);
}
uint32_t kll_helper::int_cap_aux_aux(uint16_t k, uint8_t depth) {
if (depth > 30) throw std::invalid_argument("depth > 30");
const uint64_t twok = k << 1; // for rounding, we pre-multiply by 2
const uint64_t tmp = (uint64_t) (((uint64_t) twok << depth) / powers_of_three[depth]);
const uint64_t result = (tmp + 1) >> 1; // then here we add 1 and divide by 2
if (result > k) throw std::logic_error("result > k");
return result;
}
uint64_t kll_helper::sum_the_sample_weights(uint8_t num_levels, const uint32_t* levels) {
uint64_t total = 0;
uint64_t weight = 1;
for (uint8_t lvl = 0; lvl < num_levels; lvl++) {
total += weight * (levels[lvl + 1] - levels[lvl]);
weight *= 2;
}
return total;
}
template <typename T>
void kll_helper::randomly_halve_down(T* buf, uint32_t start, uint32_t length) {
if (!is_even(length)) throw std::invalid_argument("length must be even");
const uint32_t half_length = length / 2;
#ifdef KLL_VALIDATION
const uint32_t offset = deterministic_offset();
#else
const uint32_t offset = random_bit();
#endif
uint32_t j = start + offset;
for (uint32_t i = start; i < (start + half_length); i++) {
if (i != j) buf[i] = std::move(buf[j]);
j += 2;
}
}
template <typename T>
void kll_helper::randomly_halve_up(T* buf, uint32_t start, uint32_t length) {
if (!is_even(length)) throw std::invalid_argument("length must be even");
const uint32_t half_length = length / 2;
#ifdef KLL_VALIDATION
const uint32_t offset = deterministic_offset();
#else
const uint32_t offset = random_bit();
#endif
uint32_t j = (start + length) - 1 - offset;
for (uint32_t i = (start + length) - 1; i >= (start + half_length); i--) {
if (i != j) buf[i] = std::move(buf[j]);
j -= 2;
}
}
// this version moves objects within the same buffer
// assumes that destination has initialized objects
// does not destroy the originals after the move
template <typename T, typename C>
void kll_helper::merge_sorted_arrays(T* buf, uint32_t start_a, uint32_t len_a, uint32_t start_b, uint32_t len_b, uint32_t start_c) {
const uint32_t len_c = len_a + len_b;
const uint32_t lim_a = start_a + len_a;
const uint32_t lim_b = start_b + len_b;
const uint32_t lim_c = start_c + len_c;
uint32_t a = start_a;
uint32_t b = start_b;
for (uint32_t c = start_c; c < lim_c; c++) {
if (a == lim_a) {
if (b != c) buf[c] = std::move(buf[b]);
b++;
} else if (b == lim_b) {
if (a != c) buf[c] = std::move(buf[a]);
a++;
} else if (C()(buf[a], buf[b])) {
if (a != c) buf[c] = std::move(buf[a]);
a++;
} else {
if (b != c) buf[c] = std::move(buf[b]);
b++;
}
}
if (a != lim_a || b != lim_b) throw std::logic_error("inconsistent state");
}
// this version is to merge from two different buffers into a third buffer
// initializes objects is the destination buffer
// moves objects from buf_a and destroys the originals
// copies objects from buf_b
template <typename T, typename C>
void kll_helper::merge_sorted_arrays(const T* buf_a, uint32_t start_a, uint32_t len_a, const T* buf_b, uint32_t start_b, uint32_t len_b, T* buf_c, uint32_t start_c) {
const uint32_t len_c = len_a + len_b;
const uint32_t lim_a = start_a + len_a;
const uint32_t lim_b = start_b + len_b;
const uint32_t lim_c = start_c + len_c;
uint32_t a = start_a;
uint32_t b = start_b;
for (uint32_t c = start_c; c < lim_c; c++) {
if (a == lim_a) {
new (&buf_c[c]) T(buf_b[b++]);
} else if (b == lim_b) {
new (&buf_c[c]) T(std::move(buf_a[a]));
buf_a[a++].~T();
} else if (C()(buf_a[a], buf_b[b])) {
new (&buf_c[c]) T(std::move(buf_a[a]));
buf_a[a++].~T();
} else {
new (&buf_c[c]) T(buf_b[b++]);
}
}
if (a != lim_a || b != lim_b) throw std::logic_error("inconsistent state");
}
/*
* Here is what we do for each level:
* If it does not need to be compacted, then simply copy it over.
*
* Otherwise, it does need to be compacted, so...
* Copy zero or one guy over.
* If the level above is empty, halve up.
* Else the level above is nonempty, so...
* halve down, then merge up.
* Adjust the boundaries of the level above.
*
* It can be proved that general_compress returns a sketch that satisfies the space constraints
* no matter how much data is passed in.
* All levels except for level zero must be sorted before calling this, and will still be
* sorted afterwards.
* Level zero is not required to be sorted before, and may not be sorted afterwards.
*/
template <typename T, typename C>
kll_helper::compress_result kll_helper::general_compress(uint16_t k, uint8_t m, uint8_t num_levels_in, T* items,
uint32_t* in_levels, uint32_t* out_levels, bool is_level_zero_sorted)
{
if (num_levels_in == 0) throw std::invalid_argument("num_levels_in == 0"); // things are too weird if zero levels are allowed
const uint32_t starting_item_count = in_levels[num_levels_in] - in_levels[0];
uint8_t current_num_levels = num_levels_in;
uint32_t current_item_count = starting_item_count; // decreases with each compaction
uint32_t target_item_count = compute_total_capacity(k, m, current_num_levels); // increases if we add levels
bool done_yet = false;
out_levels[0] = 0;
uint8_t current_level = 0;
while (!done_yet) {
// If we are at the current top level, add an empty level above it for convenience,
// but do not increment num_levels until later
if (current_level == (current_num_levels - 1)) {
in_levels[current_level + 2] = in_levels[current_level + 1];
}
const auto raw_beg = in_levels[current_level];
const auto raw_lim = in_levels[current_level + 1];
const auto raw_pop = raw_lim - raw_beg;
if ((current_item_count < target_item_count) || (raw_pop < level_capacity(k, current_num_levels, current_level, m))) {
// move level over as is
// make sure we are not moving data upwards
if (raw_beg < out_levels[current_level]) throw std::logic_error("wrong move");
std::move(&items[raw_beg], &items[raw_lim], &items[out_levels[current_level]]);
out_levels[current_level + 1] = out_levels[current_level] + raw_pop;
} else {
// The sketch is too full AND this level is too full, so we compact it
// Note: this can add a level and thus change the sketches capacities
const auto pop_above = in_levels[current_level + 2] - raw_lim;
const bool odd_pop = is_odd(raw_pop);
const auto adj_beg = odd_pop ? 1 + raw_beg : raw_beg;
const auto adj_pop = odd_pop ? raw_pop - 1 : raw_pop;
const auto half_adj_pop = adj_pop / 2;
if (odd_pop) { // move one guy over
items[out_levels[current_level]] = std::move(items[raw_beg]);
out_levels[current_level + 1] = out_levels[current_level] + 1;
} else { // even number of items
out_levels[current_level + 1] = out_levels[current_level];
}
// level zero might not be sorted, so we must sort it if we wish to compact it
if ((current_level == 0) && !is_level_zero_sorted) {
std::sort(&items[adj_beg], &items[adj_beg + adj_pop], C());
}
if (pop_above == 0) { // Level above is empty, so halve up
randomly_halve_up(items, adj_beg, adj_pop);
} else { // Level above is nonempty, so halve down, then merge up
randomly_halve_down(items, adj_beg, adj_pop);
merge_sorted_arrays<T, C>(items, adj_beg, half_adj_pop, raw_lim, pop_above, adj_beg + half_adj_pop);
}
// track the fact that we just eliminated some data
current_item_count -= half_adj_pop;
// adjust the boundaries of the level above
in_levels[current_level + 1] = in_levels[current_level + 1] - half_adj_pop;
// increment num_levels if we just compacted the old top level
// this creates some more capacity (the size of the new bottom level)
if (current_level == (current_num_levels - 1)) {
current_num_levels++;
target_item_count += level_capacity(k, current_num_levels, 0, m);
}
} // end of code for compacting a level
// determine whether we have processed all levels yet (including any new levels that we created)
if (current_level == (current_num_levels - 1)) done_yet = true;
current_level++;
} // end of loop over levels
if ((out_levels[current_num_levels] - out_levels[0]) != current_item_count) throw std::logic_error("inconsistent state");
for (uint32_t i = current_item_count; i < starting_item_count; i++) items[i].~T();
compress_result result;
result.final_num_levels = current_num_levels;
result.final_capacity = target_item_count;
result.final_num_items = current_item_count;
return result;
}
template<typename T>
void kll_helper::copy_construct(const T* src, size_t src_first, size_t src_last, T* dst, size_t dst_first) {
while (src_first != src_last) {
new (&dst[dst_first++]) T(src[src_first++]);
}
}
template<typename T>
void kll_helper::move_construct(T* src, size_t src_first, size_t src_last, T* dst, size_t dst_first, bool destroy) {
while (src_first != src_last) {
new (&dst[dst_first++]) T(std::move(src[src_first]));
if (destroy) src[src_first].~T();
src_first++;
}
}
#ifdef KLL_VALIDATION
uint32_t kll_helper::deterministic_offset() {
const uint32_t result(kll_next_offset);
kll_next_offset = 1 - kll_next_offset;
return result;
}
#endif
} /* namespace datasketches */
#endif // KLL_HELPER_IMPL_HPP_