| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use arrow::array::{ArrayRef, Int32Array, RecordBatch, StringArray, StringViewArray}; |
| use datafusion::arrow::datatypes::{DataType, Field, Schema}; |
| use datafusion::catalog::MemTable; |
| use datafusion::common::config::CsvOptions; |
| use datafusion::common::parsers::CompressionTypeVariant; |
| use datafusion::common::DataFusionError; |
| use datafusion::common::ScalarValue; |
| use datafusion::dataframe::DataFrameWriteOptions; |
| use datafusion::error::Result; |
| use datafusion::functions_aggregate::average::avg; |
| use datafusion::functions_aggregate::min_max::max; |
| use datafusion::prelude::*; |
| use std::fs::File; |
| use std::io::Write; |
| use std::sync::Arc; |
| use tempfile::tempdir; |
| |
| /// This example demonstrates using DataFusion's DataFrame API |
| /// |
| /// # Reading from different formats |
| /// |
| /// * [read_parquet]: execute queries against parquet files |
| /// * [read_csv]: execute queries against csv files |
| /// * [read_memory]: execute queries against in-memory arrow data |
| /// |
| /// # Writing out to local storage |
| /// |
| /// The following examples demonstrate how to write a DataFrame to local |
| /// storage. See `external_dependency/dataframe-to-s3.rs` for an example writing |
| /// to a remote object store. |
| /// |
| /// * [write_out]: write out a DataFrame to a table, parquet file, csv file, or json file |
| /// |
| /// # Executing subqueries |
| /// |
| /// * [where_scalar_subquery]: execute a scalar subquery |
| /// * [where_in_subquery]: execute a subquery with an IN clause |
| /// * [where_exist_subquery]: execute a subquery with an EXISTS clause |
| /// |
| /// # Querying data |
| /// |
| /// * [query_to_date]: execute queries against parquet files |
| #[tokio::main] |
| async fn main() -> Result<()> { |
| // The SessionContext is the main high level API for interacting with DataFusion |
| let ctx = SessionContext::new(); |
| read_parquet(&ctx).await?; |
| read_csv(&ctx).await?; |
| read_memory(&ctx).await?; |
| read_memory_macro().await?; |
| write_out(&ctx).await?; |
| register_aggregate_test_data("t1", &ctx).await?; |
| register_aggregate_test_data("t2", &ctx).await?; |
| where_scalar_subquery(&ctx).await?; |
| where_in_subquery(&ctx).await?; |
| where_exist_subquery(&ctx).await?; |
| Ok(()) |
| } |
| |
| /// Use DataFrame API to |
| /// 1. Read parquet files, |
| /// 2. Show the schema |
| /// 3. Select columns and rows |
| async fn read_parquet(ctx: &SessionContext) -> Result<()> { |
| // Find the local path of "alltypes_plain.parquet" |
| let testdata = datafusion::test_util::parquet_test_data(); |
| let filename = &format!("{testdata}/alltypes_plain.parquet"); |
| |
| // Read the parquet files and show its schema using 'describe' |
| let parquet_df = ctx |
| .read_parquet(filename, ParquetReadOptions::default()) |
| .await?; |
| |
| // show its schema using 'describe' |
| parquet_df.clone().describe().await?.show().await?; |
| |
| // Select three columns and filter the results |
| // so that only rows where id > 1 are returned |
| parquet_df |
| .select_columns(&["id", "bool_col", "timestamp_col"])? |
| .filter(col("id").gt(lit(1)))? |
| .show() |
| .await?; |
| |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to |
| /// 1. Read CSV files |
| /// 2. Optionally specify schema |
| async fn read_csv(ctx: &SessionContext) -> Result<()> { |
| // create example.csv file in a temporary directory |
| let dir = tempdir()?; |
| let file_path = dir.path().join("example.csv"); |
| { |
| let mut file = File::create(&file_path)?; |
| // write CSV data |
| file.write_all( |
| r#"id,time,vote,unixtime,rating |
| a1,"10 6, 2013",3,1381017600,5.0 |
| a2,"08 9, 2013",2,1376006400,4.5"# |
| .as_bytes(), |
| )?; |
| } // scope closes the file |
| let file_path = file_path.to_str().unwrap(); |
| |
| // You can read a CSV file and DataFusion will infer the schema automatically |
| let csv_df = ctx.read_csv(file_path, CsvReadOptions::default()).await?; |
| csv_df.show().await?; |
| |
| // If you know the types of your data you can specify them explicitly |
| let schema = Schema::new(vec![ |
| Field::new("id", DataType::Utf8, false), |
| Field::new("time", DataType::Utf8, false), |
| Field::new("vote", DataType::Int32, true), |
| Field::new("unixtime", DataType::Int64, false), |
| Field::new("rating", DataType::Float32, true), |
| ]); |
| // Create a csv option provider with the desired schema |
| let csv_read_option = CsvReadOptions { |
| // Update the option provider with the defined schema |
| schema: Some(&schema), |
| ..Default::default() |
| }; |
| let csv_df = ctx.read_csv(file_path, csv_read_option).await?; |
| csv_df.show().await?; |
| |
| // You can also create DataFrames from the result of sql queries |
| // and using the `enable_url_table` refer to local files directly |
| let dyn_ctx = ctx.clone().enable_url_table(); |
| let csv_df = dyn_ctx |
| .sql(&format!("SELECT rating, unixtime FROM '{file_path}'")) |
| .await?; |
| csv_df.show().await?; |
| |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to: |
| /// 1. Read in-memory data. |
| async fn read_memory(ctx: &SessionContext) -> Result<()> { |
| // define data in memory |
| let a: ArrayRef = Arc::new(StringArray::from(vec!["a", "b", "c", "d"])); |
| let b: ArrayRef = Arc::new(Int32Array::from(vec![1, 10, 10, 100])); |
| let batch = RecordBatch::try_from_iter(vec![("a", a), ("b", b)])?; |
| |
| // declare a table in memory. In Apache Spark API, this corresponds to createDataFrame(...). |
| ctx.register_batch("t", batch)?; |
| let df = ctx.table("t").await?; |
| |
| // construct an expression corresponding to "SELECT a, b FROM t WHERE b = 10" in SQL |
| let filter = col("b").eq(lit(10)); |
| let df = df.select_columns(&["a", "b"])?.filter(filter)?; |
| |
| // print the results |
| df.show().await?; |
| |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to: |
| /// 1. Read in-memory data. |
| async fn read_memory_macro() -> Result<()> { |
| // create a DataFrame using macro |
| let df = dataframe!( |
| "a" => ["a", "b", "c", "d"], |
| "b" => [1, 10, 10, 100] |
| )?; |
| // print the results |
| df.show().await?; |
| |
| // create empty DataFrame using macro |
| let df_empty = dataframe!()?; |
| df_empty.show().await?; |
| |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to: |
| /// 1. Write out a DataFrame to a table |
| /// 2. Write out a DataFrame to a parquet file |
| /// 3. Write out a DataFrame to a csv file |
| /// 4. Write out a DataFrame to a json file |
| async fn write_out(ctx: &SessionContext) -> std::result::Result<(), DataFusionError> { |
| let array = StringViewArray::from(vec!["a", "b", "c"]); |
| let schema = Arc::new(Schema::new(vec![Field::new( |
| "tablecol1", |
| DataType::Utf8View, |
| false, |
| )])); |
| let batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(array)])?; |
| let mem_table = MemTable::try_new(schema.clone(), vec![vec![batch]])?; |
| ctx.register_table("initial_data", Arc::new(mem_table))?; |
| let df = ctx.table("initial_data").await?; |
| |
| ctx.sql( |
| "create external table |
| test(tablecol1 varchar) |
| stored as parquet |
| location './datafusion-examples/test_table/'", |
| ) |
| .await? |
| .collect() |
| .await?; |
| |
| // This is equivalent to INSERT INTO test VALUES ('a'), ('b'), ('c'). |
| // The behavior of write_table depends on the TableProvider's implementation |
| // of the insert_into method. |
| df.clone() |
| .write_table("test", DataFrameWriteOptions::new()) |
| .await?; |
| |
| df.clone() |
| .write_parquet( |
| "./datafusion-examples/test_parquet/", |
| DataFrameWriteOptions::new(), |
| None, |
| ) |
| .await?; |
| |
| df.clone() |
| .write_csv( |
| "./datafusion-examples/test_csv/", |
| // DataFrameWriteOptions contains options which control how data is written |
| // such as compression codec |
| DataFrameWriteOptions::new(), |
| Some(CsvOptions::default().with_compression(CompressionTypeVariant::GZIP)), |
| ) |
| .await?; |
| |
| df.clone() |
| .write_json( |
| "./datafusion-examples/test_json/", |
| DataFrameWriteOptions::new(), |
| None, |
| ) |
| .await?; |
| |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to execute the following subquery: |
| /// select c1,c2 from t1 where (select avg(t2.c2) from t2 where t1.c1 = t2.c1)>0 limit 3; |
| async fn where_scalar_subquery(ctx: &SessionContext) -> Result<()> { |
| ctx.table("t1") |
| .await? |
| .filter( |
| scalar_subquery(Arc::new( |
| ctx.table("t2") |
| .await? |
| .filter(out_ref_col(DataType::Utf8, "t1.c1").eq(col("t2.c1")))? |
| .aggregate(vec![], vec![avg(col("t2.c2"))])? |
| .select(vec![avg(col("t2.c2"))])? |
| .into_unoptimized_plan(), |
| )) |
| .gt(lit(0u8)), |
| )? |
| .select(vec![col("t1.c1"), col("t1.c2")])? |
| .limit(0, Some(3))? |
| .show() |
| .await?; |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to execute the following subquery: |
| /// select t1.c1, t1.c2 from t1 where t1.c2 in (select max(t2.c2) from t2 where t2.c1 > 0 ) limit 3; |
| async fn where_in_subquery(ctx: &SessionContext) -> Result<()> { |
| ctx.table("t1") |
| .await? |
| .filter(in_subquery( |
| col("t1.c2"), |
| Arc::new( |
| ctx.table("t2") |
| .await? |
| .filter(col("t2.c1").gt(lit(ScalarValue::UInt8(Some(0)))))? |
| .aggregate(vec![], vec![max(col("t2.c2"))])? |
| .select(vec![max(col("t2.c2"))])? |
| .into_unoptimized_plan(), |
| ), |
| ))? |
| .select(vec![col("t1.c1"), col("t1.c2")])? |
| .limit(0, Some(3))? |
| .show() |
| .await?; |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to execute the following subquery: |
| /// select t1.c1, t1.c2 from t1 where exists (select t2.c2 from t2 where t1.c1 = t2.c1) limit 3; |
| async fn where_exist_subquery(ctx: &SessionContext) -> Result<()> { |
| ctx.table("t1") |
| .await? |
| .filter(exists(Arc::new( |
| ctx.table("t2") |
| .await? |
| .filter(out_ref_col(DataType::Utf8, "t1.c1").eq(col("t2.c1")))? |
| .select(vec![col("t2.c2")])? |
| .into_unoptimized_plan(), |
| )))? |
| .select(vec![col("t1.c1"), col("t1.c2")])? |
| .limit(0, Some(3))? |
| .show() |
| .await?; |
| Ok(()) |
| } |
| |
| async fn register_aggregate_test_data(name: &str, ctx: &SessionContext) -> Result<()> { |
| let testdata = datafusion::test_util::arrow_test_data(); |
| ctx.register_csv( |
| name, |
| &format!("{testdata}/csv/aggregate_test_100.csv"), |
| CsvReadOptions::default(), |
| ) |
| .await?; |
| Ok(()) |
| } |