| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| //! See `main.rs` for how to run it. |
| |
| use std::sync::Arc; |
| |
| use arrow::array::{record_batch, RecordBatch}; |
| use arrow::datatypes::{DataType, Field, FieldRef, Schema, SchemaRef}; |
| |
| use datafusion::assert_batches_eq; |
| use datafusion::common::not_impl_err; |
| use datafusion::common::tree_node::{Transformed, TransformedResult, TreeNode}; |
| use datafusion::common::{Result, ScalarValue}; |
| use datafusion::datasource::listing::{ |
| ListingTable, ListingTableConfig, ListingTableConfigExt, ListingTableUrl, |
| }; |
| use datafusion::execution::context::SessionContext; |
| use datafusion::execution::object_store::ObjectStoreUrl; |
| use datafusion::parquet::arrow::ArrowWriter; |
| use datafusion::physical_expr::expressions::CastExpr; |
| use datafusion::physical_expr::PhysicalExpr; |
| use datafusion::prelude::SessionConfig; |
| use datafusion_physical_expr_adapter::{ |
| DefaultPhysicalExprAdapterFactory, PhysicalExprAdapter, PhysicalExprAdapterFactory, |
| }; |
| use object_store::memory::InMemory; |
| use object_store::path::Path; |
| use object_store::{ObjectStore, PutPayload}; |
| |
| // Example showing how to implement custom casting rules to adapt file schemas. |
| // This example enforces that casts must be strictly widening: if the file type is Int64 and the table type is Int32, it will error |
| // before even reading the data. |
| // Without this custom cast rule DataFusion would happily do the narrowing cast, potentially erroring only if it found a row with data it could not cast. |
| pub async fn custom_file_casts() -> Result<()> { |
| println!("=== Creating example data ==="); |
| |
| // Create a logical / table schema with an Int32 column |
| let logical_schema = |
| Arc::new(Schema::new(vec![Field::new("id", DataType::Int32, false)])); |
| |
| // Create some data that can be cast (Int16 -> Int32 is widening) and some that cannot (Int64 -> Int32 is narrowing) |
| let store = Arc::new(InMemory::new()) as Arc<dyn ObjectStore>; |
| let path = Path::from("good.parquet"); |
| let batch = record_batch!(("id", Int16, [1, 2, 3]))?; |
| write_data(&store, &path, &batch).await?; |
| let path = Path::from("bad.parquet"); |
| let batch = record_batch!(("id", Int64, [1, 2, 3]))?; |
| write_data(&store, &path, &batch).await?; |
| |
| // Set up query execution |
| let mut cfg = SessionConfig::new(); |
| // Turn on filter pushdown so that the PhysicalExprAdapter is used |
| cfg.options_mut().execution.parquet.pushdown_filters = true; |
| let ctx = SessionContext::new_with_config(cfg); |
| ctx.runtime_env() |
| .register_object_store(ObjectStoreUrl::parse("memory://")?.as_ref(), store); |
| |
| // Register our good and bad files via ListingTable |
| let listing_table_config = |
| ListingTableConfig::new(ListingTableUrl::parse("memory:///good.parquet")?) |
| .infer_options(&ctx.state()) |
| .await? |
| .with_schema(Arc::clone(&logical_schema)) |
| .with_expr_adapter_factory(Arc::new( |
| CustomCastPhysicalExprAdapterFactory::new(Arc::new( |
| DefaultPhysicalExprAdapterFactory, |
| )), |
| )); |
| let table = ListingTable::try_new(listing_table_config).unwrap(); |
| ctx.register_table("good_table", Arc::new(table))?; |
| let listing_table_config = |
| ListingTableConfig::new(ListingTableUrl::parse("memory:///bad.parquet")?) |
| .infer_options(&ctx.state()) |
| .await? |
| .with_schema(Arc::clone(&logical_schema)) |
| .with_expr_adapter_factory(Arc::new( |
| CustomCastPhysicalExprAdapterFactory::new(Arc::new( |
| DefaultPhysicalExprAdapterFactory, |
| )), |
| )); |
| let table = ListingTable::try_new(listing_table_config).unwrap(); |
| ctx.register_table("bad_table", Arc::new(table))?; |
| |
| println!("\n=== File with narrower schema is cast ==="); |
| let query = "SELECT id FROM good_table WHERE id > 1"; |
| println!("Query: {query}"); |
| let batches = ctx.sql(query).await?.collect().await?; |
| #[rustfmt::skip] |
| let expected = [ |
| "+----+", |
| "| id |", |
| "+----+", |
| "| 2 |", |
| "| 3 |", |
| "+----+", |
| ]; |
| arrow::util::pretty::print_batches(&batches)?; |
| assert_batches_eq!(expected, &batches); |
| |
| println!("\n=== File with wider schema errors ==="); |
| let query = "SELECT id FROM bad_table WHERE id > 1"; |
| println!("Query: {query}"); |
| match ctx.sql(query).await?.collect().await { |
| Ok(_) => panic!("Expected error for narrowing cast, but query succeeded"), |
| Err(e) => { |
| println!("Caught expected error: {e}"); |
| } |
| } |
| Ok(()) |
| } |
| |
| async fn write_data( |
| store: &dyn ObjectStore, |
| path: &Path, |
| batch: &RecordBatch, |
| ) -> Result<()> { |
| let mut buf = vec![]; |
| let mut writer = ArrowWriter::try_new(&mut buf, batch.schema(), None)?; |
| writer.write(batch)?; |
| writer.close()?; |
| |
| let payload = PutPayload::from_bytes(buf.into()); |
| store.put(path, payload).await?; |
| Ok(()) |
| } |
| |
| /// Factory for creating DefaultValuePhysicalExprAdapter instances |
| #[derive(Debug)] |
| struct CustomCastPhysicalExprAdapterFactory { |
| inner: Arc<dyn PhysicalExprAdapterFactory>, |
| } |
| |
| impl CustomCastPhysicalExprAdapterFactory { |
| fn new(inner: Arc<dyn PhysicalExprAdapterFactory>) -> Self { |
| Self { inner } |
| } |
| } |
| |
| impl PhysicalExprAdapterFactory for CustomCastPhysicalExprAdapterFactory { |
| fn create( |
| &self, |
| logical_file_schema: SchemaRef, |
| physical_file_schema: SchemaRef, |
| ) -> Arc<dyn PhysicalExprAdapter> { |
| let inner = self |
| .inner |
| .create(logical_file_schema, Arc::clone(&physical_file_schema)); |
| Arc::new(CustomCastsPhysicalExprAdapter { |
| physical_file_schema, |
| inner, |
| }) |
| } |
| } |
| |
| /// Custom PhysicalExprAdapter that handles missing columns with default values from metadata |
| /// and wraps DefaultPhysicalExprAdapter for standard schema adaptation |
| #[derive(Debug, Clone)] |
| struct CustomCastsPhysicalExprAdapter { |
| physical_file_schema: SchemaRef, |
| inner: Arc<dyn PhysicalExprAdapter>, |
| } |
| |
| impl PhysicalExprAdapter for CustomCastsPhysicalExprAdapter { |
| fn rewrite(&self, mut expr: Arc<dyn PhysicalExpr>) -> Result<Arc<dyn PhysicalExpr>> { |
| // First delegate to the inner adapter to handle missing columns and discover any necessary casts |
| expr = self.inner.rewrite(expr)?; |
| // Now we can apply custom casting rules or even swap out all CastExprs for a custom cast kernel / expression |
| // For example, [DataFusion Comet](https://github.com/apache/datafusion-comet) has a [custom cast kernel](https://github.com/apache/datafusion-comet/blob/b4ac876ab420ed403ac7fc8e1b29f42f1f442566/native/spark-expr/src/conversion_funcs/cast.rs#L133-L138). |
| expr.transform(|expr| { |
| if let Some(cast) = expr.as_any().downcast_ref::<CastExpr>() { |
| let input_data_type = |
| cast.expr().data_type(&self.physical_file_schema)?; |
| let output_data_type = cast.data_type(&self.physical_file_schema)?; |
| if !cast.is_bigger_cast(&input_data_type) { |
| return not_impl_err!( |
| "Unsupported CAST from {input_data_type} to {output_data_type}" |
| ); |
| } |
| } |
| Ok(Transformed::no(expr)) |
| }) |
| .data() |
| } |
| |
| fn with_partition_values( |
| &self, |
| partition_values: Vec<(FieldRef, ScalarValue)>, |
| ) -> Arc<dyn PhysicalExprAdapter> { |
| Arc::new(Self { |
| inner: self.inner.with_partition_values(partition_values), |
| ..self.clone() |
| }) |
| } |
| } |