blob: 8ea7c2951223da23f7857b159bae6ed9ee010382 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use datafusion::error::Result;
use datafusion::prelude::*;
use datafusion::sql::unparser::expr_to_sql;
use datafusion_sql::unparser::dialect::CustomDialectBuilder;
use datafusion_sql::unparser::{plan_to_sql, Unparser};
/// This example demonstrates the programmatic construction of SQL strings using
/// the DataFusion Expr [`Expr`] and LogicalPlan [`LogicalPlan`] API.
///
///
/// The code in this example shows how to:
///
/// 1. [`simple_expr_to_sql_demo`]: Create a simple expression [`Exprs`] with
/// fluent API and convert to sql suitable for passing to another database
///
/// 2. [`simple_expr_to_pretty_sql_demo`] Create a simple expression
/// [`Exprs`] with fluent API and convert to sql without extra parentheses,
/// suitable for displaying to humans
///
/// 3. [`simple_expr_to_sql_demo_escape_mysql_style`]" Create a simple
/// expression [`Exprs`] with fluent API and convert to sql escaping column
/// names in MySQL style.
///
/// 4. [`simple_plan_to_sql_demo`]: Create a simple logical plan using the
/// DataFrames API and convert to sql string.
///
/// 5. [`round_trip_plan_to_sql_demo`]: Create a logical plan from a SQL string, modify it using the
/// DataFrames API and convert it back to a sql string.
#[tokio::main]
async fn main() -> Result<()> {
// See how to evaluate expressions
simple_expr_to_sql_demo()?;
simple_expr_to_pretty_sql_demo()?;
simple_expr_to_sql_demo_escape_mysql_style()?;
simple_plan_to_sql_demo().await?;
round_trip_plan_to_sql_demo().await?;
Ok(())
}
/// DataFusion can convert expressions to SQL, using column name escaping
/// PostgreSQL style.
fn simple_expr_to_sql_demo() -> Result<()> {
let expr = col("a").lt(lit(5)).or(col("a").eq(lit(8)));
let sql = expr_to_sql(&expr)?.to_string();
assert_eq!(sql, r#"((a < 5) OR (a = 8))"#);
Ok(())
}
/// DataFusioon can remove parentheses when converting an expression to SQL.
/// Note that output is intended for humans, not for other SQL engines,
/// as difference in precedence rules can cause expressions to be parsed differently.
fn simple_expr_to_pretty_sql_demo() -> Result<()> {
let expr = col("a").lt(lit(5)).or(col("a").eq(lit(8)));
let unparser = Unparser::default().with_pretty(true);
let sql = unparser.expr_to_sql(&expr)?.to_string();
assert_eq!(sql, r#"a < 5 OR a = 8"#);
Ok(())
}
/// DataFusion can convert expressions to SQL without escaping column names using
/// using a custom dialect and an explicit unparser
fn simple_expr_to_sql_demo_escape_mysql_style() -> Result<()> {
let expr = col("a").lt(lit(5)).or(col("a").eq(lit(8)));
let dialect = CustomDialectBuilder::new()
.with_identifier_quote_style('`')
.build();
let unparser = Unparser::new(&dialect);
let sql = unparser.expr_to_sql(&expr)?.to_string();
assert_eq!(sql, r#"((`a` < 5) OR (`a` = 8))"#);
Ok(())
}
/// DataFusion can convert a logic plan created using the DataFrames API to read from a parquet file
/// to SQL, using column name escaping PostgreSQL style.
async fn simple_plan_to_sql_demo() -> Result<()> {
let ctx = SessionContext::new();
let testdata = datafusion::test_util::parquet_test_data();
let df = ctx
.read_parquet(
&format!("{testdata}/alltypes_plain.parquet"),
ParquetReadOptions::default(),
)
.await?
.select_columns(&["id", "int_col", "double_col", "date_string_col"])?;
// Convert the data frame to a SQL string
let sql = plan_to_sql(df.logical_plan())?.to_string();
assert_eq!(
sql,
r#"SELECT "?table?".id, "?table?".int_col, "?table?".double_col, "?table?".date_string_col FROM "?table?""#
);
Ok(())
}
/// DataFusion can also be used to parse SQL, programmatically modify the query
/// (in this case adding a filter) and then and converting back to SQL.
async fn round_trip_plan_to_sql_demo() -> Result<()> {
let ctx = SessionContext::new();
let testdata = datafusion::test_util::parquet_test_data();
// register parquet file with the execution context
ctx.register_parquet(
"alltypes_plain",
&format!("{testdata}/alltypes_plain.parquet"),
ParquetReadOptions::default(),
)
.await?;
// create a logical plan from a SQL string and then programmatically add new filters
let df = ctx
// Use SQL to read some data from the parquet file
.sql(
"SELECT int_col, double_col, CAST(date_string_col as VARCHAR) \
FROM alltypes_plain",
)
.await?
// Add id > 1 and tinyint_col < double_col filter
.filter(
col("id")
.gt(lit(1))
.and(col("tinyint_col").lt(col("double_col"))),
)?;
let sql = plan_to_sql(df.logical_plan())?.to_string();
assert_eq!(
sql,
r#"SELECT alltypes_plain.int_col, alltypes_plain.double_col, CAST(alltypes_plain.date_string_col AS VARCHAR) FROM alltypes_plain WHERE ((alltypes_plain.id > 1) AND (alltypes_plain.tinyint_col < alltypes_plain.double_col))"#
);
Ok(())
}