| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use arrow::datatypes::{DataType, Field, Schema, SchemaRef}; |
| use datafusion_common::config::ConfigOptions; |
| use datafusion_common::{plan_err, Result}; |
| use datafusion_expr::{ |
| AggregateUDF, Expr, LogicalPlan, ScalarUDF, TableProviderFilterPushDown, TableSource, |
| WindowUDF, |
| }; |
| use datafusion_optimizer::{ |
| Analyzer, AnalyzerRule, Optimizer, OptimizerConfig, OptimizerContext, OptimizerRule, |
| }; |
| use datafusion_sql::planner::{ContextProvider, SqlToRel}; |
| use datafusion_sql::sqlparser::dialect::PostgreSqlDialect; |
| use datafusion_sql::sqlparser::parser::Parser; |
| use datafusion_sql::TableReference; |
| use std::any::Any; |
| use std::sync::Arc; |
| |
| /// This example shows how to use DataFusion's SQL planner to parse SQL text and |
| /// build `LogicalPlan`s without executing them. |
| /// |
| /// For example, if you need a SQL planner and optimizer like Apache Calcite, |
| /// but do not want a Java runtime dependency for some reason, you could use |
| /// DataFusion as a SQL frontend. |
| /// |
| /// Normally, users interact with DataFusion via SessionContext. However, using |
| /// SessionContext requires depending on the full `datafusion` core crate. |
| /// |
| /// In this example, we demonstrate how to use the lower level APIs directly, |
| /// which only requires the `datafusion-sql` dependency. |
| pub fn main() -> Result<()> { |
| // First, we parse the SQL string. Note that we use the DataFusion |
| // Parser, which wraps the `sqlparser-rs` SQL parser and adds DataFusion |
| // specific syntax such as `CREATE EXTERNAL TABLE` |
| let dialect = PostgreSqlDialect {}; |
| let sql = "SELECT name FROM person WHERE age BETWEEN 21 AND 32"; |
| let statements = Parser::parse_sql(&dialect, sql)?; |
| |
| // Now, use DataFusion's SQL planner, called `SqlToRel` to create a |
| // `LogicalPlan` from the parsed statement |
| // |
| // To invoke SqlToRel we must provide it schema and function information |
| // via an object that implements the `ContextProvider` trait |
| let context_provider = MyContextProvider::default(); |
| let sql_to_rel = SqlToRel::new(&context_provider); |
| let logical_plan = sql_to_rel.sql_statement_to_plan(statements[0].clone())?; |
| |
| // Here is the logical plan that was generated: |
| assert_eq!( |
| logical_plan.display_indent().to_string(), |
| "Projection: person.name\ |
| \n Filter: person.age BETWEEN Int64(21) AND Int64(32)\ |
| \n TableScan: person" |
| ); |
| |
| // The initial LogicalPlan is a mechanical translation from the parsed SQL |
| // and often can not run without the Analyzer passes. |
| // |
| // In this example, `person.age` is actually a different data type (Int8) |
| // than the values to which it is compared to which are Int64. Most |
| // execution engines, including DataFusion's, will fail if you provide such |
| // a plan. |
| // |
| // To prepare it to run, we must apply type coercion to align types, and |
| // check for other semantic errors. In DataFusion this is done by a |
| // component called the Analyzer. |
| let config = OptimizerContext::default().with_skip_failing_rules(false); |
| let analyzed_plan = Analyzer::new().execute_and_check( |
| logical_plan, |
| config.options(), |
| observe_analyzer, |
| )?; |
| // Note that the Analyzer has added a CAST to the plan to align the types |
| assert_eq!( |
| analyzed_plan.display_indent().to_string(), |
| "Projection: person.name\ |
| \n Filter: CAST(person.age AS Int64) BETWEEN Int64(21) AND Int64(32)\ |
| \n TableScan: person", |
| ); |
| |
| // As we can see, the Analyzer added a CAST so the types are the same |
| // (Int64). However, this plan is not as efficient as it could be, as it |
| // will require casting *each row* of the input to UInt64 before comparison |
| // to 21 and 32. To optimize this query's performance, it is better to cast |
| // the constants once at plan time to UInt8. |
| // |
| // Query optimization is handled in DataFusion by a component called the |
| // Optimizer, which we now invoke |
| // |
| let optimized_plan = |
| Optimizer::new().optimize(analyzed_plan, &config, observe_optimizer)?; |
| |
| // Show the fully optimized plan. Note that the optimizer did several things |
| // to prepare this plan for execution: |
| // |
| // 1. Removed casts from person.age as we described above |
| // 2. Converted BETWEEN to two single column inequalities (which are typically faster to execute) |
| // 3. Pushed the projection of `name` down to the scan (so the scan only returns that column) |
| // 4. Pushed the filter into the scan |
| // 5. Removed the projection as it was only serving to pass through the name column |
| assert_eq!( |
| optimized_plan.display_indent().to_string(), |
| "TableScan: person projection=[name], full_filters=[person.age >= UInt8(21), person.age <= UInt8(32)]" |
| ); |
| |
| Ok(()) |
| } |
| |
| // Note that both the optimizer and the analyzer take a callback, called an |
| // "observer" that is invoked after each pass. We do not do anything with these |
| // callbacks in this example |
| |
| fn observe_analyzer(_plan: &LogicalPlan, _rule: &dyn AnalyzerRule) {} |
| fn observe_optimizer(_plan: &LogicalPlan, _rule: &dyn OptimizerRule) {} |
| |
| /// Implements the `ContextProvider` trait required to plan SQL |
| #[derive(Default)] |
| struct MyContextProvider { |
| options: ConfigOptions, |
| } |
| |
| impl ContextProvider for MyContextProvider { |
| fn get_table_source(&self, name: TableReference) -> Result<Arc<dyn TableSource>> { |
| if name.table() == "person" { |
| Ok(Arc::new(MyTableSource { |
| schema: Arc::new(Schema::new(vec![ |
| Field::new("name", DataType::Utf8, false), |
| Field::new("age", DataType::UInt8, false), |
| ])), |
| })) |
| } else { |
| plan_err!("Table {} not found", name.table()) |
| } |
| } |
| |
| fn get_function_meta(&self, _name: &str) -> Option<Arc<ScalarUDF>> { |
| None |
| } |
| |
| fn get_aggregate_meta(&self, _name: &str) -> Option<Arc<AggregateUDF>> { |
| None |
| } |
| |
| fn get_variable_type(&self, _variable_names: &[String]) -> Option<DataType> { |
| None |
| } |
| |
| fn get_window_meta(&self, _name: &str) -> Option<Arc<WindowUDF>> { |
| None |
| } |
| |
| fn options(&self) -> &ConfigOptions { |
| &self.options |
| } |
| |
| fn udf_names(&self) -> Vec<String> { |
| Vec::new() |
| } |
| |
| fn udaf_names(&self) -> Vec<String> { |
| Vec::new() |
| } |
| |
| fn udwf_names(&self) -> Vec<String> { |
| Vec::new() |
| } |
| } |
| |
| /// TableSource is the part of TableProvider needed for creating a LogicalPlan. |
| struct MyTableSource { |
| schema: SchemaRef, |
| } |
| |
| impl TableSource for MyTableSource { |
| fn as_any(&self) -> &dyn Any { |
| self |
| } |
| |
| fn schema(&self) -> SchemaRef { |
| self.schema.clone() |
| } |
| |
| // For this example, we report to the DataFusion optimizer that |
| // this provider can apply filters during the scan |
| fn supports_filters_pushdown( |
| &self, |
| filters: &[&Expr], |
| ) -> Result<Vec<TableProviderFilterPushDown>> { |
| Ok(vec![TableProviderFilterPushDown::Exact; filters.len()]) |
| } |
| } |