blob: 985cab703a5cba0709bbf3d085ce355005efab56 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use arrow::array::AsArray;
use arrow::datatypes::{Float64Type, Int32Type};
use datafusion::error::Result;
use datafusion::prelude::*;
use futures::StreamExt;
/// This example shows that it is possible to convert query results into Rust structs .
#[tokio::main]
async fn main() -> Result<()> {
let data_list = Data::new().await?;
println!("{data_list:#?}");
Ok(())
}
#[derive(Debug)]
struct Data {
#[allow(dead_code)]
int_col: i32,
#[allow(dead_code)]
double_col: f64,
}
impl Data {
pub async fn new() -> Result<Vec<Self>> {
// this group is almost the same as the one you find it in parquet_sql.rs
let ctx = SessionContext::new();
let testdata = datafusion::test_util::parquet_test_data();
ctx.register_parquet(
"alltypes_plain",
&format!("{testdata}/alltypes_plain.parquet"),
ParquetReadOptions::default(),
)
.await?;
let df = ctx
.sql("SELECT int_col, double_col FROM alltypes_plain")
.await?;
df.clone().show().await?;
let mut stream = df.execute_stream().await?;
let mut list = vec![];
while let Some(b) = stream.next().await.transpose()? {
let int_col = b.column(0).as_primitive::<Int32Type>();
let float_col = b.column(1).as_primitive::<Float64Type>();
for (i, f) in int_col.values().iter().zip(float_col.values()) {
list.push(Data {
int_col: *i,
double_col: *f,
})
}
}
Ok(list)
}
}