| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use arrow::array::AsArray; |
| use arrow::datatypes::{Float64Type, Int32Type}; |
| use datafusion::error::Result; |
| use datafusion::prelude::*; |
| use futures::StreamExt; |
| |
| /// This example shows that it is possible to convert query results into Rust structs . |
| #[tokio::main] |
| async fn main() -> Result<()> { |
| let data_list = Data::new().await?; |
| println!("{data_list:#?}"); |
| Ok(()) |
| } |
| |
| #[derive(Debug)] |
| struct Data { |
| #[allow(dead_code)] |
| int_col: i32, |
| #[allow(dead_code)] |
| double_col: f64, |
| } |
| |
| impl Data { |
| pub async fn new() -> Result<Vec<Self>> { |
| // this group is almost the same as the one you find it in parquet_sql.rs |
| let ctx = SessionContext::new(); |
| |
| let testdata = datafusion::test_util::parquet_test_data(); |
| |
| ctx.register_parquet( |
| "alltypes_plain", |
| &format!("{testdata}/alltypes_plain.parquet"), |
| ParquetReadOptions::default(), |
| ) |
| .await?; |
| |
| let df = ctx |
| .sql("SELECT int_col, double_col FROM alltypes_plain") |
| .await?; |
| |
| df.clone().show().await?; |
| |
| let mut stream = df.execute_stream().await?; |
| let mut list = vec![]; |
| while let Some(b) = stream.next().await.transpose()? { |
| let int_col = b.column(0).as_primitive::<Int32Type>(); |
| let float_col = b.column(1).as_primitive::<Float64Type>(); |
| |
| for (i, f) in int_col.values().iter().zip(float_col.values()) { |
| list.push(Data { |
| int_col: *i, |
| double_col: *f, |
| }) |
| } |
| } |
| |
| Ok(list) |
| } |
| } |