| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use std::any::Any; |
| use std::sync::Arc; |
| |
| use arrow::array::{ |
| new_null_array, Array, ArrayRef, AsArray, Float32Array, Float64Array, |
| }; |
| use arrow::compute; |
| use arrow::datatypes::{DataType, Float64Type}; |
| use arrow::record_batch::RecordBatch; |
| use datafusion::error::Result; |
| use datafusion::logical_expr::Volatility; |
| use datafusion::prelude::*; |
| use datafusion_common::{internal_err, ScalarValue}; |
| use datafusion_expr::sort_properties::{ExprProperties, SortProperties}; |
| use datafusion_expr::{ColumnarValue, ScalarUDF, ScalarUDFImpl, Signature}; |
| |
| /// This example shows how to use the full ScalarUDFImpl API to implement a user |
| /// defined function. As in the `simple_udf.rs` example, this struct implements |
| /// a function that takes two arguments and returns the first argument raised to |
| /// the power of the second argument `a^b`. |
| /// |
| /// To do so, we must implement the `ScalarUDFImpl` trait. |
| #[derive(Debug, Clone)] |
| struct PowUdf { |
| signature: Signature, |
| aliases: Vec<String>, |
| } |
| |
| impl PowUdf { |
| /// Create a new instance of the `PowUdf` struct |
| fn new() -> Self { |
| Self { |
| signature: Signature::exact( |
| // this function will always take two arguments of type f64 |
| vec![DataType::Float64, DataType::Float64], |
| // this function is deterministic and will always return the same |
| // result for the same input |
| Volatility::Immutable, |
| ), |
| // we will also add an alias of "my_pow" |
| aliases: vec!["my_pow".to_string()], |
| } |
| } |
| } |
| |
| impl ScalarUDFImpl for PowUdf { |
| /// We implement as_any so that we can downcast the ScalarUDFImpl trait object |
| fn as_any(&self) -> &dyn Any { |
| self |
| } |
| |
| /// Return the name of this function |
| fn name(&self) -> &str { |
| "pow" |
| } |
| |
| /// Return the "signature" of this function -- namely what types of arguments it will take |
| fn signature(&self) -> &Signature { |
| &self.signature |
| } |
| |
| /// What is the type of value that will be returned by this function? In |
| /// this case it will always be a constant value, but it could also be a |
| /// function of the input types. |
| fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> { |
| Ok(DataType::Float64) |
| } |
| |
| /// This is the function that actually calculates the results. |
| /// |
| /// This is the same way that functions built into DataFusion are invoked, |
| /// which permits important special cases when one or both of the arguments |
| /// are single values (constants). For example `pow(a, 2)` |
| /// |
| /// However, it also means the implementation is more complex than when |
| /// using `create_udf`. |
| fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> { |
| // DataFusion has arranged for the correct inputs to be passed to this |
| // function, but we check again to make sure |
| assert_eq!(args.len(), 2); |
| let (base, exp) = (&args[0], &args[1]); |
| assert_eq!(base.data_type(), DataType::Float64); |
| assert_eq!(exp.data_type(), DataType::Float64); |
| |
| match (base, exp) { |
| // For demonstration purposes we also implement the scalar / scalar |
| // case here, but it is not typically required for high performance. |
| // |
| // For performance it is most important to optimize cases where at |
| // least one argument is an array. If all arguments are constants, |
| // the DataFusion expression simplification logic will often invoke |
| // this path once during planning, and simply use the result during |
| // execution. |
| ( |
| ColumnarValue::Scalar(ScalarValue::Float64(base)), |
| ColumnarValue::Scalar(ScalarValue::Float64(exp)), |
| ) => { |
| // compute the output. Note DataFusion treats `None` as NULL. |
| let res = match (base, exp) { |
| (Some(base), Some(exp)) => Some(base.powf(*exp)), |
| // one or both arguments were NULL |
| _ => None, |
| }; |
| Ok(ColumnarValue::Scalar(ScalarValue::from(res))) |
| } |
| // special case if the exponent is a constant |
| ( |
| ColumnarValue::Array(base_array), |
| ColumnarValue::Scalar(ScalarValue::Float64(exp)), |
| ) => { |
| let result_array = match exp { |
| // a ^ null = null |
| None => new_null_array(base_array.data_type(), base_array.len()), |
| // a ^ exp |
| Some(exp) => { |
| // DataFusion has ensured both arguments are Float64: |
| let base_array = base_array.as_primitive::<Float64Type>(); |
| // calculate the result for every row. The `unary` |
| // kernel creates very fast "vectorized" code and |
| // handles things like null values for us. |
| let res: Float64Array = |
| compute::unary(base_array, |base| base.powf(*exp)); |
| Arc::new(res) |
| } |
| }; |
| Ok(ColumnarValue::Array(result_array)) |
| } |
| |
| // special case if the base is a constant (note this code is quite |
| // similar to the previous case, so we omit comments) |
| ( |
| ColumnarValue::Scalar(ScalarValue::Float64(base)), |
| ColumnarValue::Array(exp_array), |
| ) => { |
| let res = match base { |
| None => new_null_array(exp_array.data_type(), exp_array.len()), |
| Some(base) => { |
| let exp_array = exp_array.as_primitive::<Float64Type>(); |
| let res: Float64Array = |
| compute::unary(exp_array, |exp| base.powf(exp)); |
| Arc::new(res) |
| } |
| }; |
| Ok(ColumnarValue::Array(res)) |
| } |
| // Both arguments are arrays so we have to perform the calculation for every row |
| (ColumnarValue::Array(base_array), ColumnarValue::Array(exp_array)) => { |
| let res: Float64Array = compute::binary( |
| base_array.as_primitive::<Float64Type>(), |
| exp_array.as_primitive::<Float64Type>(), |
| |base, exp| base.powf(exp), |
| )?; |
| Ok(ColumnarValue::Array(Arc::new(res))) |
| } |
| // if the types were not float, it is a bug in DataFusion |
| _ => { |
| internal_err!("Invalid argument types to pow function") |
| } |
| } |
| } |
| |
| /// We will also add an alias of "my_pow" |
| fn aliases(&self) -> &[String] { |
| &self.aliases |
| } |
| |
| fn output_ordering(&self, input: &[ExprProperties]) -> Result<SortProperties> { |
| // The POW function preserves the order of its argument. |
| Ok(input[0].sort_properties) |
| } |
| } |
| |
| /// In this example we register `PowUdf` as a user defined function |
| /// and invoke it via the DataFrame API and SQL |
| #[tokio::main] |
| async fn main() -> Result<()> { |
| let ctx = create_context()?; |
| |
| // create the UDF |
| let pow = ScalarUDF::from(PowUdf::new()); |
| |
| // register the UDF with the context so it can be invoked by name and from SQL |
| ctx.register_udf(pow.clone()); |
| |
| // get a DataFrame from the context for scanning the "t" table |
| let df = ctx.table("t").await?; |
| |
| // Call pow(a, 10) using the DataFrame API |
| let df = df.select(vec![pow.call(vec![col("a"), lit(10i32)])])?; |
| |
| // note that the second argument is passed as an i32, not f64. DataFusion |
| // automatically coerces the types to match the UDF's defined signature. |
| |
| // print the results |
| df.show().await?; |
| |
| // You can also invoke both pow(2, 10) and its alias my_pow(a, b) using SQL |
| let sql_df = ctx.sql("SELECT pow(2, 10), my_pow(a, b) FROM t").await?; |
| sql_df.show().await?; |
| |
| Ok(()) |
| } |
| |
| /// create local execution context with an in-memory table: |
| /// |
| /// ```text |
| /// +-----+-----+ |
| /// | a | b | |
| /// +-----+-----+ |
| /// | 2.1 | 1.0 | |
| /// | 3.1 | 2.0 | |
| /// | 4.1 | 3.0 | |
| /// | 5.1 | 4.0 | |
| /// +-----+-----+ |
| /// ``` |
| fn create_context() -> Result<SessionContext> { |
| // define data. |
| let a: ArrayRef = Arc::new(Float32Array::from(vec![2.1, 3.1, 4.1, 5.1])); |
| let b: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0])); |
| let batch = RecordBatch::try_from_iter(vec![("a", a), ("b", b)])?; |
| |
| // declare a new context. In Spark API, this corresponds to a new SparkSession |
| let ctx = SessionContext::new(); |
| |
| // declare a table in memory. In Spark API, this corresponds to createDataFrame(...). |
| ctx.register_batch("t", batch)?; |
| Ok(ctx) |
| } |