blob: 9a3ee9c8ebcd443715fcd168982b35946aaa1c11 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::any::Any;
use std::sync::Arc;
use arrow::array::{
new_null_array, Array, ArrayRef, AsArray, Float32Array, Float64Array,
};
use arrow::compute;
use arrow::datatypes::{DataType, Float64Type};
use arrow::record_batch::RecordBatch;
use datafusion::error::Result;
use datafusion::logical_expr::Volatility;
use datafusion::prelude::*;
use datafusion_common::{internal_err, ScalarValue};
use datafusion_expr::sort_properties::{ExprProperties, SortProperties};
use datafusion_expr::{ColumnarValue, ScalarUDF, ScalarUDFImpl, Signature};
/// This example shows how to use the full ScalarUDFImpl API to implement a user
/// defined function. As in the `simple_udf.rs` example, this struct implements
/// a function that takes two arguments and returns the first argument raised to
/// the power of the second argument `a^b`.
///
/// To do so, we must implement the `ScalarUDFImpl` trait.
#[derive(Debug, Clone)]
struct PowUdf {
signature: Signature,
aliases: Vec<String>,
}
impl PowUdf {
/// Create a new instance of the `PowUdf` struct
fn new() -> Self {
Self {
signature: Signature::exact(
// this function will always take two arguments of type f64
vec![DataType::Float64, DataType::Float64],
// this function is deterministic and will always return the same
// result for the same input
Volatility::Immutable,
),
// we will also add an alias of "my_pow"
aliases: vec!["my_pow".to_string()],
}
}
}
impl ScalarUDFImpl for PowUdf {
/// We implement as_any so that we can downcast the ScalarUDFImpl trait object
fn as_any(&self) -> &dyn Any {
self
}
/// Return the name of this function
fn name(&self) -> &str {
"pow"
}
/// Return the "signature" of this function -- namely what types of arguments it will take
fn signature(&self) -> &Signature {
&self.signature
}
/// What is the type of value that will be returned by this function? In
/// this case it will always be a constant value, but it could also be a
/// function of the input types.
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Float64)
}
/// This is the function that actually calculates the results.
///
/// This is the same way that functions built into DataFusion are invoked,
/// which permits important special cases when one or both of the arguments
/// are single values (constants). For example `pow(a, 2)`
///
/// However, it also means the implementation is more complex than when
/// using `create_udf`.
fn invoke(&self, args: &[ColumnarValue]) -> Result<ColumnarValue> {
// DataFusion has arranged for the correct inputs to be passed to this
// function, but we check again to make sure
assert_eq!(args.len(), 2);
let (base, exp) = (&args[0], &args[1]);
assert_eq!(base.data_type(), DataType::Float64);
assert_eq!(exp.data_type(), DataType::Float64);
match (base, exp) {
// For demonstration purposes we also implement the scalar / scalar
// case here, but it is not typically required for high performance.
//
// For performance it is most important to optimize cases where at
// least one argument is an array. If all arguments are constants,
// the DataFusion expression simplification logic will often invoke
// this path once during planning, and simply use the result during
// execution.
(
ColumnarValue::Scalar(ScalarValue::Float64(base)),
ColumnarValue::Scalar(ScalarValue::Float64(exp)),
) => {
// compute the output. Note DataFusion treats `None` as NULL.
let res = match (base, exp) {
(Some(base), Some(exp)) => Some(base.powf(*exp)),
// one or both arguments were NULL
_ => None,
};
Ok(ColumnarValue::Scalar(ScalarValue::from(res)))
}
// special case if the exponent is a constant
(
ColumnarValue::Array(base_array),
ColumnarValue::Scalar(ScalarValue::Float64(exp)),
) => {
let result_array = match exp {
// a ^ null = null
None => new_null_array(base_array.data_type(), base_array.len()),
// a ^ exp
Some(exp) => {
// DataFusion has ensured both arguments are Float64:
let base_array = base_array.as_primitive::<Float64Type>();
// calculate the result for every row. The `unary`
// kernel creates very fast "vectorized" code and
// handles things like null values for us.
let res: Float64Array =
compute::unary(base_array, |base| base.powf(*exp));
Arc::new(res)
}
};
Ok(ColumnarValue::Array(result_array))
}
// special case if the base is a constant (note this code is quite
// similar to the previous case, so we omit comments)
(
ColumnarValue::Scalar(ScalarValue::Float64(base)),
ColumnarValue::Array(exp_array),
) => {
let res = match base {
None => new_null_array(exp_array.data_type(), exp_array.len()),
Some(base) => {
let exp_array = exp_array.as_primitive::<Float64Type>();
let res: Float64Array =
compute::unary(exp_array, |exp| base.powf(exp));
Arc::new(res)
}
};
Ok(ColumnarValue::Array(res))
}
// Both arguments are arrays so we have to perform the calculation for every row
(ColumnarValue::Array(base_array), ColumnarValue::Array(exp_array)) => {
let res: Float64Array = compute::binary(
base_array.as_primitive::<Float64Type>(),
exp_array.as_primitive::<Float64Type>(),
|base, exp| base.powf(exp),
)?;
Ok(ColumnarValue::Array(Arc::new(res)))
}
// if the types were not float, it is a bug in DataFusion
_ => {
internal_err!("Invalid argument types to pow function")
}
}
}
/// We will also add an alias of "my_pow"
fn aliases(&self) -> &[String] {
&self.aliases
}
fn output_ordering(&self, input: &[ExprProperties]) -> Result<SortProperties> {
// The POW function preserves the order of its argument.
Ok(input[0].sort_properties)
}
}
/// In this example we register `PowUdf` as a user defined function
/// and invoke it via the DataFrame API and SQL
#[tokio::main]
async fn main() -> Result<()> {
let ctx = create_context()?;
// create the UDF
let pow = ScalarUDF::from(PowUdf::new());
// register the UDF with the context so it can be invoked by name and from SQL
ctx.register_udf(pow.clone());
// get a DataFrame from the context for scanning the "t" table
let df = ctx.table("t").await?;
// Call pow(a, 10) using the DataFrame API
let df = df.select(vec![pow.call(vec![col("a"), lit(10i32)])])?;
// note that the second argument is passed as an i32, not f64. DataFusion
// automatically coerces the types to match the UDF's defined signature.
// print the results
df.show().await?;
// You can also invoke both pow(2, 10) and its alias my_pow(a, b) using SQL
let sql_df = ctx.sql("SELECT pow(2, 10), my_pow(a, b) FROM t").await?;
sql_df.show().await?;
Ok(())
}
/// create local execution context with an in-memory table:
///
/// ```text
/// +-----+-----+
/// | a | b |
/// +-----+-----+
/// | 2.1 | 1.0 |
/// | 3.1 | 2.0 |
/// | 4.1 | 3.0 |
/// | 5.1 | 4.0 |
/// +-----+-----+
/// ```
fn create_context() -> Result<SessionContext> {
// define data.
let a: ArrayRef = Arc::new(Float32Array::from(vec![2.1, 3.1, 4.1, 5.1]));
let b: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0]));
let batch = RecordBatch::try_from_iter(vec![("a", a), ("b", b)])?;
// declare a new context. In Spark API, this corresponds to a new SparkSession
let ctx = SessionContext::new();
// declare a table in memory. In Spark API, this corresponds to createDataFrame(...).
ctx.register_batch("t", batch)?;
Ok(ctx)
}