| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| mod ansi; |
| mod bigquery; |
| mod clickhouse; |
| mod databricks; |
| mod duckdb; |
| mod generic; |
| mod hive; |
| mod mssql; |
| mod mysql; |
| mod postgresql; |
| mod redshift; |
| mod snowflake; |
| mod sqlite; |
| |
| use core::any::{Any, TypeId}; |
| use core::fmt::Debug; |
| use core::iter::Peekable; |
| use core::str::Chars; |
| |
| use log::debug; |
| |
| pub use self::ansi::AnsiDialect; |
| pub use self::bigquery::BigQueryDialect; |
| pub use self::clickhouse::ClickHouseDialect; |
| pub use self::databricks::DatabricksDialect; |
| pub use self::duckdb::DuckDbDialect; |
| pub use self::generic::GenericDialect; |
| pub use self::hive::HiveDialect; |
| pub use self::mssql::MsSqlDialect; |
| pub use self::mysql::MySqlDialect; |
| pub use self::postgresql::PostgreSqlDialect; |
| pub use self::redshift::RedshiftSqlDialect; |
| pub use self::snowflake::SnowflakeDialect; |
| pub use self::sqlite::SQLiteDialect; |
| use crate::ast::{Expr, Statement}; |
| pub use crate::keywords; |
| use crate::keywords::Keyword; |
| use crate::parser::{Parser, ParserError}; |
| use crate::tokenizer::Token; |
| |
| #[cfg(not(feature = "std"))] |
| use alloc::boxed::Box; |
| |
| /// Convenience check if a [`Parser`] uses a certain dialect. |
| /// |
| /// Note: when possible please the new style, adding a method to the [`Dialect`] |
| /// trait rather than using this macro. |
| /// |
| /// The benefits of adding a method on `Dialect` over this macro are: |
| /// 1. user defined [`Dialect`]s can customize the parsing behavior |
| /// 2. The differences between dialects can be clearly documented in the trait |
| /// |
| /// `dialect_of!(parser is SQLiteDialect | GenericDialect)` evaluates |
| /// to `true` if `parser.dialect` is one of the [`Dialect`]s specified. |
| macro_rules! dialect_of { |
| ( $parsed_dialect: ident is $($dialect_type: ty)|+ ) => { |
| ($($parsed_dialect.dialect.is::<$dialect_type>())||+) |
| }; |
| } |
| |
| /// Encapsulates the differences between SQL implementations. |
| /// |
| /// # SQL Dialects |
| /// |
| /// SQL implementations deviate from one another, either due to |
| /// custom extensions or various historical reasons. This trait |
| /// encapsulates the parsing differences between dialects. |
| /// |
| /// [`GenericDialect`] is the most permissive dialect, and parses the union of |
| /// all the other dialects, when there is no ambiguity. However, it does not |
| /// currently allow `CREATE TABLE` statements without types specified for all |
| /// columns; use [`SQLiteDialect`] if you require that. |
| /// |
| /// # Examples |
| /// Most users create a [`Dialect`] directly, as shown on the [module |
| /// level documentation]: |
| /// |
| /// ``` |
| /// # use sqlparser::dialect::AnsiDialect; |
| /// let dialect = AnsiDialect {}; |
| /// ``` |
| /// |
| /// It is also possible to dynamically create a [`Dialect`] from its |
| /// name. For example: |
| /// |
| /// ``` |
| /// # use sqlparser::dialect::{AnsiDialect, dialect_from_str}; |
| /// let dialect = dialect_from_str("ansi").unwrap(); |
| /// |
| /// // Parsed dialect is an instance of `AnsiDialect`: |
| /// assert!(dialect.is::<AnsiDialect>()); |
| /// ``` |
| /// |
| /// [module level documentation]: crate |
| pub trait Dialect: Debug + Any { |
| /// Determine the [`TypeId`] of this dialect. |
| /// |
| /// By default, return the same [`TypeId`] as [`Any::type_id`]. Can be overridden |
| /// by dialects that behave like other dialects |
| /// (for example when wrapping a dialect). |
| fn dialect(&self) -> TypeId { |
| self.type_id() |
| } |
| |
| /// Determine if a character starts a quoted identifier. The default |
| /// implementation, accepting "double quoted" ids is both ANSI-compliant |
| /// and appropriate for most dialects (with the notable exception of |
| /// MySQL, MS SQL, and sqlite). You can accept one of characters listed |
| /// in `Word::matching_end_quote` here |
| fn is_delimited_identifier_start(&self, ch: char) -> bool { |
| ch == '"' || ch == '`' |
| } |
| |
| /// Return the character used to quote identifiers. |
| fn identifier_quote_style(&self, _identifier: &str) -> Option<char> { |
| None |
| } |
| |
| /// Determine if quoted characters are proper for identifier |
| fn is_proper_identifier_inside_quotes(&self, mut _chars: Peekable<Chars<'_>>) -> bool { |
| true |
| } |
| |
| /// Determine if a character is a valid start character for an unquoted identifier |
| fn is_identifier_start(&self, ch: char) -> bool; |
| |
| /// Determine if a character is a valid unquoted identifier character |
| fn is_identifier_part(&self, ch: char) -> bool; |
| |
| /// Most dialects do not have custom operators. Override this method to provide custom operators. |
| fn is_custom_operator_part(&self, _ch: char) -> bool { |
| false |
| } |
| |
| /// Determine if the dialect supports escaping characters via '\' in string literals. |
| /// |
| /// Some dialects like BigQuery and Snowflake support this while others like |
| /// Postgres do not. Such that the following is accepted by the former but |
| /// rejected by the latter. |
| /// ```sql |
| /// SELECT 'ab\'cd'; |
| /// ``` |
| /// |
| /// Conversely, such dialects reject the following statement which |
| /// otherwise would be valid in the other dialects. |
| /// ```sql |
| /// SELECT '\'; |
| /// ``` |
| fn supports_string_literal_backslash_escape(&self) -> bool { |
| false |
| } |
| |
| /// Determine if the dialect supports string literals with `U&` prefix. |
| /// This is used to specify Unicode code points in string literals. |
| /// For example, in PostgreSQL, the following is a valid string literal: |
| /// ```sql |
| /// SELECT U&'\0061\0062\0063'; |
| /// ``` |
| /// This is equivalent to the string literal `'abc'`. |
| /// See |
| /// - [Postgres docs](https://www.postgresql.org/docs/current/sql-syntax-lexical.html#SQL-SYNTAX-STRINGS-UESCAPE) |
| /// - [H2 docs](http://www.h2database.com/html/grammar.html#string) |
| fn supports_unicode_string_literal(&self) -> bool { |
| false |
| } |
| |
| /// Does the dialect support `FILTER (WHERE expr)` for aggregate queries? |
| fn supports_filter_during_aggregation(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports referencing another named window |
| /// within a window clause declaration. |
| /// |
| /// Example |
| /// ```sql |
| /// SELECT * FROM mytable |
| /// WINDOW mynamed_window AS another_named_window |
| /// ``` |
| fn supports_window_clause_named_window_reference(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports `ARRAY_AGG() [WITHIN GROUP (ORDER BY)]` expressions. |
| /// Otherwise, the dialect should expect an `ORDER BY` without the `WITHIN GROUP` clause, e.g. [`ANSI`] |
| /// |
| /// [`ANSI`]: https://jakewheat.github.io/sql-overview/sql-2016-foundation-grammar.html#array-aggregate-function |
| fn supports_within_after_array_aggregation(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialects supports `group sets, roll up, or cube` expressions. |
| fn supports_group_by_expr(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports CONNECT BY. |
| fn supports_connect_by(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports the MATCH_RECOGNIZE operation. |
| fn supports_match_recognize(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports `(NOT) IN ()` expressions |
| fn supports_in_empty_list(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports `BEGIN {DEFERRED | IMMEDIATE | EXCLUSIVE} [TRANSACTION]` statements |
| fn supports_start_transaction_modifier(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports named arguments of the form FUN(a = '1', b = '2'). |
| fn supports_named_fn_args_with_eq_operator(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports identifiers starting with a numeric |
| /// prefix such as tables named `59901_user_login` |
| fn supports_numeric_prefix(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialects supports specifying null treatment |
| /// as part of a window function's parameter list as opposed |
| /// to after the parameter list. |
| /// |
| /// i.e The following syntax returns true |
| /// ```sql |
| /// FIRST_VALUE(a IGNORE NULLS) OVER () |
| /// ``` |
| /// while the following syntax returns false |
| /// ```sql |
| /// FIRST_VALUE(a) IGNORE NULLS OVER () |
| /// ``` |
| fn supports_window_function_null_treatment_arg(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports defining structs or objects using a |
| /// syntax like `{'x': 1, 'y': 2, 'z': 3}`. |
| fn supports_dictionary_syntax(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports defining object using the |
| /// syntax like `Map {1: 10, 2: 20}`. |
| fn support_map_literal_syntax(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports lambda functions, for example: |
| /// |
| /// ```sql |
| /// SELECT transform(array(1, 2, 3), x -> x + 1); -- returns [2,3,4] |
| /// ``` |
| fn supports_lambda_functions(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports multiple variable assignment |
| /// using parentheses in a `SET` variable declaration. |
| /// |
| /// ```sql |
| /// SET (variable[, ...]) = (expression[, ...]); |
| /// ``` |
| fn supports_parenthesized_set_variables(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports an `EXCEPT` clause following a |
| /// wildcard in a select list. |
| /// |
| /// For example |
| /// ```sql |
| /// SELECT * EXCEPT order_id FROM orders; |
| /// ``` |
| fn supports_select_wildcard_except(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect has a CONVERT function which accepts a type first |
| /// and an expression second, e.g. `CONVERT(varchar, 1)` |
| fn convert_type_before_value(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if the dialect supports triple quoted string |
| /// e.g. `"""abc"""` |
| fn supports_triple_quoted_string(&self) -> bool { |
| false |
| } |
| |
| /// Dialect-specific prefix parser override |
| fn parse_prefix(&self, _parser: &mut Parser) -> Option<Result<Expr, ParserError>> { |
| // return None to fall back to the default behavior |
| None |
| } |
| |
| /// Does the dialect support trailing commas around the query? |
| fn supports_trailing_commas(&self) -> bool { |
| false |
| } |
| |
| /// Does the dialect support parsing `LIMIT 1, 2` as `LIMIT 2 OFFSET 1`? |
| fn supports_limit_comma(&self) -> bool { |
| false |
| } |
| |
| /// Does the dialect support trailing commas in the projection list? |
| fn supports_projection_trailing_commas(&self) -> bool { |
| self.supports_trailing_commas() |
| } |
| |
| /// Dialect-specific infix parser override |
| /// |
| /// This method is called to parse the next infix expression. |
| /// |
| /// If `None` is returned, falls back to the default behavior. |
| fn parse_infix( |
| &self, |
| _parser: &mut Parser, |
| _expr: &Expr, |
| _precedence: u8, |
| ) -> Option<Result<Expr, ParserError>> { |
| // return None to fall back to the default behavior |
| None |
| } |
| |
| /// Dialect-specific precedence override |
| /// |
| /// This method is called to get the precedence of the next token. |
| /// |
| /// If `None` is returned, falls back to the default behavior. |
| fn get_next_precedence(&self, _parser: &Parser) -> Option<Result<u8, ParserError>> { |
| // return None to fall back to the default behavior |
| None |
| } |
| |
| /// Get the precedence of the next token, looking at the full token stream. |
| /// |
| /// A higher number => higher precedence |
| /// |
| /// See [`Self::get_next_precedence`] to override the behavior for just the |
| /// next token. |
| /// |
| /// The default implementation is used for many dialects, but can be |
| /// overridden to provide dialect-specific behavior. |
| fn get_next_precedence_default(&self, parser: &Parser) -> Result<u8, ParserError> { |
| if let Some(precedence) = self.get_next_precedence(parser) { |
| return precedence; |
| } |
| macro_rules! p { |
| ($precedence:ident) => { |
| self.prec_value(Precedence::$precedence) |
| }; |
| } |
| |
| let token = parser.peek_token(); |
| debug!("get_next_precedence_full() {:?}", token); |
| match token.token { |
| Token::Word(w) if w.keyword == Keyword::OR => Ok(p!(Or)), |
| Token::Word(w) if w.keyword == Keyword::AND => Ok(p!(And)), |
| Token::Word(w) if w.keyword == Keyword::XOR => Ok(p!(Xor)), |
| |
| Token::Word(w) if w.keyword == Keyword::AT => { |
| match ( |
| parser.peek_nth_token(1).token, |
| parser.peek_nth_token(2).token, |
| ) { |
| (Token::Word(w), Token::Word(w2)) |
| if w.keyword == Keyword::TIME && w2.keyword == Keyword::ZONE => |
| { |
| Ok(p!(AtTz)) |
| } |
| _ => Ok(self.prec_unknown()), |
| } |
| } |
| |
| Token::Word(w) if w.keyword == Keyword::NOT => match parser.peek_nth_token(1).token { |
| // The precedence of NOT varies depending on keyword that |
| // follows it. If it is followed by IN, BETWEEN, or LIKE, |
| // it takes on the precedence of those tokens. Otherwise, it |
| // is not an infix operator, and therefore has zero |
| // precedence. |
| Token::Word(w) if w.keyword == Keyword::IN => Ok(p!(Between)), |
| Token::Word(w) if w.keyword == Keyword::BETWEEN => Ok(p!(Between)), |
| Token::Word(w) if w.keyword == Keyword::LIKE => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::ILIKE => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::RLIKE => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::REGEXP => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::SIMILAR => Ok(p!(Like)), |
| _ => Ok(self.prec_unknown()), |
| }, |
| Token::Word(w) if w.keyword == Keyword::IS => Ok(p!(Is)), |
| Token::Word(w) if w.keyword == Keyword::IN => Ok(p!(Between)), |
| Token::Word(w) if w.keyword == Keyword::BETWEEN => Ok(p!(Between)), |
| Token::Word(w) if w.keyword == Keyword::LIKE => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::ILIKE => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::RLIKE => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::REGEXP => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::SIMILAR => Ok(p!(Like)), |
| Token::Word(w) if w.keyword == Keyword::OPERATOR => Ok(p!(Between)), |
| Token::Word(w) if w.keyword == Keyword::DIV => Ok(p!(MulDivModOp)), |
| Token::Eq |
| | Token::Lt |
| | Token::LtEq |
| | Token::Neq |
| | Token::Gt |
| | Token::GtEq |
| | Token::DoubleEq |
| | Token::Tilde |
| | Token::TildeAsterisk |
| | Token::ExclamationMarkTilde |
| | Token::ExclamationMarkTildeAsterisk |
| | Token::DoubleTilde |
| | Token::DoubleTildeAsterisk |
| | Token::ExclamationMarkDoubleTilde |
| | Token::ExclamationMarkDoubleTildeAsterisk |
| | Token::Spaceship => Ok(p!(Eq)), |
| Token::Pipe => Ok(p!(Pipe)), |
| Token::Caret | Token::Sharp | Token::ShiftRight | Token::ShiftLeft => Ok(p!(Caret)), |
| Token::Ampersand => Ok(p!(Ampersand)), |
| Token::Plus | Token::Minus => Ok(p!(PlusMinus)), |
| Token::Mul | Token::Div | Token::DuckIntDiv | Token::Mod | Token::StringConcat => { |
| Ok(p!(MulDivModOp)) |
| } |
| Token::DoubleColon |
| | Token::ExclamationMark |
| | Token::LBracket |
| | Token::Overlap |
| | Token::CaretAt => Ok(p!(DoubleColon)), |
| Token::Arrow |
| | Token::LongArrow |
| | Token::HashArrow |
| | Token::HashLongArrow |
| | Token::AtArrow |
| | Token::ArrowAt |
| | Token::HashMinus |
| | Token::AtQuestion |
| | Token::AtAt |
| | Token::Question |
| | Token::QuestionAnd |
| | Token::QuestionPipe |
| | Token::CustomBinaryOperator(_) => Ok(p!(PgOther)), |
| _ => Ok(self.prec_unknown()), |
| } |
| } |
| |
| /// Dialect-specific statement parser override |
| /// |
| /// This method is called to parse the next statement. |
| /// |
| /// If `None` is returned, falls back to the default behavior. |
| fn parse_statement(&self, _parser: &mut Parser) -> Option<Result<Statement, ParserError>> { |
| // return None to fall back to the default behavior |
| None |
| } |
| |
| /// Decide the lexical Precedence of operators. |
| /// |
| /// Uses (APPROXIMATELY) <https://www.postgresql.org/docs/7.0/operators.htm#AEN2026> as a reference |
| fn prec_value(&self, prec: Precedence) -> u8 { |
| match prec { |
| Precedence::DoubleColon => 50, |
| Precedence::AtTz => 41, |
| Precedence::MulDivModOp => 40, |
| Precedence::PlusMinus => 30, |
| Precedence::Xor => 24, |
| Precedence::Ampersand => 23, |
| Precedence::Caret => 22, |
| Precedence::Pipe => 21, |
| Precedence::Between => 20, |
| Precedence::Eq => 20, |
| Precedence::Like => 19, |
| Precedence::Is => 17, |
| Precedence::PgOther => 16, |
| Precedence::UnaryNot => 15, |
| Precedence::And => 10, |
| Precedence::Or => 5, |
| } |
| } |
| |
| /// Returns the precedence when the precedence is otherwise unknown |
| fn prec_unknown(&self) -> u8 { |
| 0 |
| } |
| |
| /// Returns true if this dialect requires the `TABLE` keyword after `DESCRIBE` |
| /// |
| /// Defaults to false. |
| /// |
| /// If true, the following statement is valid: `DESCRIBE TABLE my_table` |
| /// If false, the following statements are valid: `DESCRIBE my_table` and `DESCRIBE table` |
| fn describe_requires_table_keyword(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if this dialect allows the `EXTRACT` function to words other than [`Keyword`]. |
| fn allow_extract_custom(&self) -> bool { |
| false |
| } |
| |
| /// Returns true if this dialect allows the `EXTRACT` function to use single quotes in the part being extracted. |
| fn allow_extract_single_quotes(&self) -> bool { |
| false |
| } |
| |
| /// Does the dialect support with clause in create index statement? |
| /// e.g. `CREATE INDEX idx ON t WITH (key = value, key2)` |
| fn supports_create_index_with_clause(&self) -> bool { |
| false |
| } |
| |
| /// Whether `INTERVAL` expressions require units (called "qualifiers" in the ANSI SQL spec) to be specified, |
| /// e.g. `INTERVAL 1 DAY` vs `INTERVAL 1`. |
| /// |
| /// Expressions within intervals (e.g. `INTERVAL '1' + '1' DAY`) are only allowed when units are required. |
| /// |
| /// See <https://github.com/sqlparser-rs/sqlparser-rs/pull/1398> for more information. |
| /// |
| /// When `true`: |
| /// * `INTERVAL '1' DAY` is VALID |
| /// * `INTERVAL 1 + 1 DAY` is VALID |
| /// * `INTERVAL '1' + '1' DAY` is VALID |
| /// * `INTERVAL '1'` is INVALID |
| /// |
| /// When `false`: |
| /// * `INTERVAL '1'` is VALID |
| /// * `INTERVAL '1' DAY` is VALID — unit is not required, but still allowed |
| /// * `INTERVAL 1 + 1 DAY` is INVALID |
| fn require_interval_qualifier(&self) -> bool { |
| false |
| } |
| |
| fn supports_explain_with_utility_options(&self) -> bool { |
| false |
| } |
| } |
| |
| /// This represents the operators for which precedence must be defined |
| /// |
| /// higher number -> higher precedence |
| #[derive(Debug, Clone, Copy)] |
| pub enum Precedence { |
| DoubleColon, |
| AtTz, |
| MulDivModOp, |
| PlusMinus, |
| Xor, |
| Ampersand, |
| Caret, |
| Pipe, |
| Between, |
| Eq, |
| Like, |
| Is, |
| PgOther, |
| UnaryNot, |
| And, |
| Or, |
| } |
| |
| impl dyn Dialect { |
| #[inline] |
| pub fn is<T: Dialect>(&self) -> bool { |
| // borrowed from `Any` implementation |
| TypeId::of::<T>() == self.dialect() |
| } |
| } |
| |
| /// Returns the built in [`Dialect`] corresponding to `dialect_name`. |
| /// |
| /// See [`Dialect`] documentation for an example. |
| pub fn dialect_from_str(dialect_name: impl AsRef<str>) -> Option<Box<dyn Dialect>> { |
| let dialect_name = dialect_name.as_ref(); |
| match dialect_name.to_lowercase().as_str() { |
| "generic" => Some(Box::new(GenericDialect)), |
| "mysql" => Some(Box::new(MySqlDialect {})), |
| "postgresql" | "postgres" => Some(Box::new(PostgreSqlDialect {})), |
| "hive" => Some(Box::new(HiveDialect {})), |
| "sqlite" => Some(Box::new(SQLiteDialect {})), |
| "snowflake" => Some(Box::new(SnowflakeDialect)), |
| "redshift" => Some(Box::new(RedshiftSqlDialect {})), |
| "mssql" => Some(Box::new(MsSqlDialect {})), |
| "clickhouse" => Some(Box::new(ClickHouseDialect {})), |
| "bigquery" => Some(Box::new(BigQueryDialect)), |
| "ansi" => Some(Box::new(AnsiDialect {})), |
| "duckdb" => Some(Box::new(DuckDbDialect {})), |
| "databricks" => Some(Box::new(DatabricksDialect {})), |
| _ => None, |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| struct DialectHolder<'a> { |
| dialect: &'a dyn Dialect, |
| } |
| |
| #[test] |
| fn test_is_dialect() { |
| let generic_dialect: &dyn Dialect = &GenericDialect {}; |
| let ansi_dialect: &dyn Dialect = &AnsiDialect {}; |
| |
| let generic_holder = DialectHolder { |
| dialect: generic_dialect, |
| }; |
| let ansi_holder = DialectHolder { |
| dialect: ansi_dialect, |
| }; |
| |
| assert!(dialect_of!(generic_holder is GenericDialect | AnsiDialect),); |
| assert!(!dialect_of!(generic_holder is AnsiDialect)); |
| assert!(dialect_of!(ansi_holder is AnsiDialect)); |
| assert!(dialect_of!(ansi_holder is GenericDialect | AnsiDialect)); |
| assert!(!dialect_of!(ansi_holder is GenericDialect | MsSqlDialect)); |
| } |
| |
| #[test] |
| fn test_dialect_from_str() { |
| assert!(parse_dialect("generic").is::<GenericDialect>()); |
| assert!(parse_dialect("mysql").is::<MySqlDialect>()); |
| assert!(parse_dialect("MySql").is::<MySqlDialect>()); |
| assert!(parse_dialect("postgresql").is::<PostgreSqlDialect>()); |
| assert!(parse_dialect("postgres").is::<PostgreSqlDialect>()); |
| assert!(parse_dialect("hive").is::<HiveDialect>()); |
| assert!(parse_dialect("sqlite").is::<SQLiteDialect>()); |
| assert!(parse_dialect("snowflake").is::<SnowflakeDialect>()); |
| assert!(parse_dialect("SnowFlake").is::<SnowflakeDialect>()); |
| assert!(parse_dialect("MsSql").is::<MsSqlDialect>()); |
| assert!(parse_dialect("clickhouse").is::<ClickHouseDialect>()); |
| assert!(parse_dialect("ClickHouse").is::<ClickHouseDialect>()); |
| assert!(parse_dialect("bigquery").is::<BigQueryDialect>()); |
| assert!(parse_dialect("BigQuery").is::<BigQueryDialect>()); |
| assert!(parse_dialect("ansi").is::<AnsiDialect>()); |
| assert!(parse_dialect("ANSI").is::<AnsiDialect>()); |
| assert!(parse_dialect("duckdb").is::<DuckDbDialect>()); |
| assert!(parse_dialect("DuckDb").is::<DuckDbDialect>()); |
| assert!(parse_dialect("DataBricks").is::<DatabricksDialect>()); |
| assert!(parse_dialect("databricks").is::<DatabricksDialect>()); |
| |
| // error cases |
| assert!(dialect_from_str("Unknown").is_none()); |
| assert!(dialect_from_str("").is_none()); |
| } |
| |
| fn parse_dialect(v: &str) -> Box<dyn Dialect> { |
| dialect_from_str(v).unwrap() |
| } |
| |
| #[test] |
| fn identifier_quote_style() { |
| let tests: Vec<(&dyn Dialect, &str, Option<char>)> = vec![ |
| (&GenericDialect {}, "id", None), |
| (&SQLiteDialect {}, "id", Some('`')), |
| (&PostgreSqlDialect {}, "id", Some('"')), |
| ]; |
| |
| for (dialect, ident, expected) in tests { |
| let actual = dialect.identifier_quote_style(ident); |
| |
| assert_eq!(actual, expected); |
| } |
| } |
| |
| #[test] |
| fn parse_with_wrapped_dialect() { |
| /// Wrapper for a dialect. In a real-world example, this wrapper |
| /// would tweak the behavior of the dialect. For the test case, |
| /// it wraps all methods unaltered. |
| #[derive(Debug)] |
| struct WrappedDialect(MySqlDialect); |
| |
| impl Dialect for WrappedDialect { |
| fn dialect(&self) -> std::any::TypeId { |
| self.0.dialect() |
| } |
| |
| fn is_identifier_start(&self, ch: char) -> bool { |
| self.0.is_identifier_start(ch) |
| } |
| |
| fn is_delimited_identifier_start(&self, ch: char) -> bool { |
| self.0.is_delimited_identifier_start(ch) |
| } |
| |
| fn identifier_quote_style(&self, identifier: &str) -> Option<char> { |
| self.0.identifier_quote_style(identifier) |
| } |
| |
| fn supports_string_literal_backslash_escape(&self) -> bool { |
| self.0.supports_string_literal_backslash_escape() |
| } |
| |
| fn is_proper_identifier_inside_quotes( |
| &self, |
| chars: std::iter::Peekable<std::str::Chars<'_>>, |
| ) -> bool { |
| self.0.is_proper_identifier_inside_quotes(chars) |
| } |
| |
| fn supports_filter_during_aggregation(&self) -> bool { |
| self.0.supports_filter_during_aggregation() |
| } |
| |
| fn supports_within_after_array_aggregation(&self) -> bool { |
| self.0.supports_within_after_array_aggregation() |
| } |
| |
| fn supports_group_by_expr(&self) -> bool { |
| self.0.supports_group_by_expr() |
| } |
| |
| fn supports_in_empty_list(&self) -> bool { |
| self.0.supports_in_empty_list() |
| } |
| |
| fn convert_type_before_value(&self) -> bool { |
| self.0.convert_type_before_value() |
| } |
| |
| fn parse_prefix( |
| &self, |
| parser: &mut sqlparser::parser::Parser, |
| ) -> Option<Result<Expr, sqlparser::parser::ParserError>> { |
| self.0.parse_prefix(parser) |
| } |
| |
| fn parse_infix( |
| &self, |
| parser: &mut sqlparser::parser::Parser, |
| expr: &Expr, |
| precedence: u8, |
| ) -> Option<Result<Expr, sqlparser::parser::ParserError>> { |
| self.0.parse_infix(parser, expr, precedence) |
| } |
| |
| fn get_next_precedence( |
| &self, |
| parser: &sqlparser::parser::Parser, |
| ) -> Option<Result<u8, sqlparser::parser::ParserError>> { |
| self.0.get_next_precedence(parser) |
| } |
| |
| fn parse_statement( |
| &self, |
| parser: &mut sqlparser::parser::Parser, |
| ) -> Option<Result<Statement, sqlparser::parser::ParserError>> { |
| self.0.parse_statement(parser) |
| } |
| |
| fn is_identifier_part(&self, ch: char) -> bool { |
| self.0.is_identifier_part(ch) |
| } |
| } |
| |
| #[allow(clippy::needless_raw_string_hashes)] |
| let statement = r#"SELECT 'Wayne\'s World'"#; |
| let res1 = Parser::parse_sql(&MySqlDialect {}, statement); |
| let res2 = Parser::parse_sql(&WrappedDialect(MySqlDialect {}), statement); |
| assert!(res1.is_ok()); |
| assert_eq!(res1, res2); |
| } |
| } |