| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use arrow::array::{AsArray, PrimitiveArray}; |
| use arrow::datatypes::{Float64Type, Int32Type}; |
| use datafusion::common::assert_batches_eq; |
| use datafusion::error::Result; |
| use datafusion::prelude::*; |
| use futures::StreamExt; |
| |
| /// This example shows how to convert query results into Rust structs by using |
| /// the Arrow APIs to convert the results into Rust native types. |
| /// |
| /// This is a bit tricky initially as the results are returned as columns stored |
| /// as [ArrayRef] |
| /// |
| /// [ArrayRef]: arrow::array::ArrayRef |
| #[tokio::main] |
| async fn main() -> Result<()> { |
| // Run a query that returns two columns of data |
| let ctx = SessionContext::new(); |
| let testdata = datafusion::test_util::parquet_test_data(); |
| ctx.register_parquet( |
| "alltypes_plain", |
| &format!("{testdata}/alltypes_plain.parquet"), |
| ParquetReadOptions::default(), |
| ) |
| .await?; |
| let df = ctx |
| .sql("SELECT int_col, double_col FROM alltypes_plain") |
| .await?; |
| |
| // print out the results showing we have an int32 and a float64 column |
| let results = df.clone().collect().await?; |
| assert_batches_eq!( |
| [ |
| "+---------+------------+", |
| "| int_col | double_col |", |
| "+---------+------------+", |
| "| 0 | 0.0 |", |
| "| 1 | 10.1 |", |
| "| 0 | 0.0 |", |
| "| 1 | 10.1 |", |
| "| 0 | 0.0 |", |
| "| 1 | 10.1 |", |
| "| 0 | 0.0 |", |
| "| 1 | 10.1 |", |
| "+---------+------------+", |
| ], |
| &results |
| ); |
| |
| // We will now convert the query results into a Rust struct |
| let mut stream = df.execute_stream().await?; |
| let mut list = vec![]; |
| |
| // DataFusion produces data in chunks called `RecordBatch`es which are |
| // typically 8000 rows each. This loop processes each `RecordBatch` as it is |
| // produced by the query plan and adds it to the list |
| while let Some(b) = stream.next().await.transpose()? { |
| // Each `RecordBatch` has one or more columns. Each column is stored as |
| // an `ArrayRef`. To interact with data using Rust native types we need to |
| // convert these `ArrayRef`s into concrete array types using APIs from |
| // the arrow crate. |
| |
| // In this case, we know that each batch has two columns of the Arrow |
| // types Int32 and Float64, so first we cast the two columns to the |
| // appropriate Arrow PrimitiveArray (this is a fast / zero-copy cast).: |
| let int_col: &PrimitiveArray<Int32Type> = b.column(0).as_primitive(); |
| let float_col: &PrimitiveArray<Float64Type> = b.column(1).as_primitive(); |
| |
| // With PrimitiveArrays, we can access to the values as native Rust |
| // types i32 and f64, and forming the desired `Data` structs |
| for (i, f) in int_col.values().iter().zip(float_col.values()) { |
| list.push(Data { |
| int_col: *i, |
| double_col: *f, |
| }) |
| } |
| } |
| |
| // Finally, we have the results in the list of Rust structs |
| let res = format!("{list:#?}"); |
| assert_eq!( |
| res, |
| r#"[ |
| Data { |
| int_col: 0, |
| double_col: 0.0, |
| }, |
| Data { |
| int_col: 1, |
| double_col: 10.1, |
| }, |
| Data { |
| int_col: 0, |
| double_col: 0.0, |
| }, |
| Data { |
| int_col: 1, |
| double_col: 10.1, |
| }, |
| Data { |
| int_col: 0, |
| double_col: 0.0, |
| }, |
| Data { |
| int_col: 1, |
| double_col: 10.1, |
| }, |
| Data { |
| int_col: 0, |
| double_col: 0.0, |
| }, |
| Data { |
| int_col: 1, |
| double_col: 10.1, |
| }, |
| ]"# |
| ); |
| |
| // Use the fields in the struct to avoid clippy complaints |
| let int_sum = list.iter().fold(0, |acc, x| acc + x.int_col); |
| let double_sum = list.iter().fold(0.0, |acc, x| acc + x.double_col); |
| assert_eq!(int_sum, 4); |
| assert_eq!(double_sum, 40.4); |
| |
| Ok(()) |
| } |
| |
| /// This is target struct where we want the query results. |
| #[derive(Debug)] |
| struct Data { |
| int_col: i32, |
| double_col: f64, |
| } |