| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use std::any::Any; |
| use std::ops::Range; |
| use std::sync::Arc; |
| |
| use arrow::array::{make_array, Array, ArrayData, ArrayRef}; |
| use datafusion::arrow::datatypes::DataType; |
| use datafusion::arrow::pyarrow::{FromPyArrow, PyArrowType, ToPyArrow}; |
| use datafusion::error::{DataFusionError, Result}; |
| use datafusion::logical_expr::function::{PartitionEvaluatorArgs, WindowUDFFieldArgs}; |
| use datafusion::logical_expr::ptr_eq::PtrEq; |
| use datafusion::logical_expr::window_state::WindowAggState; |
| use datafusion::logical_expr::{ |
| PartitionEvaluator, PartitionEvaluatorFactory, Signature, Volatility, WindowUDF, WindowUDFImpl, |
| }; |
| use datafusion::scalar::ScalarValue; |
| use datafusion_ffi::udwf::{FFI_WindowUDF, ForeignWindowUDF}; |
| use pyo3::exceptions::PyValueError; |
| use pyo3::prelude::*; |
| use pyo3::types::{PyCapsule, PyList, PyTuple}; |
| |
| use crate::common::data_type::PyScalarValue; |
| use crate::errors::{py_datafusion_err, to_datafusion_err, PyDataFusionResult}; |
| use crate::expr::PyExpr; |
| use crate::utils::{parse_volatility, validate_pycapsule}; |
| |
| #[derive(Debug)] |
| struct RustPartitionEvaluator { |
| evaluator: PyObject, |
| } |
| |
| impl RustPartitionEvaluator { |
| fn new(evaluator: PyObject) -> Self { |
| Self { evaluator } |
| } |
| } |
| |
| impl PartitionEvaluator for RustPartitionEvaluator { |
| fn memoize(&mut self, _state: &mut WindowAggState) -> Result<()> { |
| Python::with_gil(|py| self.evaluator.bind(py).call_method0("memoize").map(|_| ())) |
| .map_err(|e| DataFusionError::Execution(format!("{e}"))) |
| } |
| |
| fn get_range(&self, idx: usize, n_rows: usize) -> Result<Range<usize>> { |
| Python::with_gil(|py| { |
| let py_args = vec![idx.into_pyobject(py)?, n_rows.into_pyobject(py)?]; |
| let py_args = PyTuple::new(py, py_args)?; |
| |
| self.evaluator |
| .bind(py) |
| .call_method1("get_range", py_args) |
| .and_then(|v| { |
| let tuple: Bound<'_, PyTuple> = v.extract()?; |
| if tuple.len() != 2 { |
| return Err(PyValueError::new_err(format!( |
| "Expected get_range to return tuple of length 2. Received length {}", |
| tuple.len() |
| ))); |
| } |
| |
| let start: usize = tuple.get_item(0).unwrap().extract()?; |
| let end: usize = tuple.get_item(1).unwrap().extract()?; |
| |
| Ok(Range { start, end }) |
| }) |
| }) |
| .map_err(|e| DataFusionError::Execution(format!("{e}"))) |
| } |
| |
| fn is_causal(&self) -> bool { |
| Python::with_gil(|py| { |
| self.evaluator |
| .bind(py) |
| .call_method0("is_causal") |
| .and_then(|v| v.extract()) |
| .unwrap_or(false) |
| }) |
| } |
| |
| fn evaluate_all(&mut self, values: &[ArrayRef], num_rows: usize) -> Result<ArrayRef> { |
| println!("evaluate all called with number of values {}", values.len()); |
| Python::with_gil(|py| { |
| let py_values = PyList::new( |
| py, |
| values |
| .iter() |
| .map(|arg| arg.into_data().to_pyarrow(py).unwrap()), |
| )?; |
| let py_num_rows = num_rows.into_pyobject(py)?; |
| let py_args = PyTuple::new(py, vec![py_values.as_any(), &py_num_rows])?; |
| |
| self.evaluator |
| .bind(py) |
| .call_method1("evaluate_all", py_args) |
| .map(|v| { |
| let array_data = ArrayData::from_pyarrow_bound(&v).unwrap(); |
| make_array(array_data) |
| }) |
| }) |
| .map_err(to_datafusion_err) |
| } |
| |
| fn evaluate(&mut self, values: &[ArrayRef], range: &Range<usize>) -> Result<ScalarValue> { |
| Python::with_gil(|py| { |
| let py_values = PyList::new( |
| py, |
| values |
| .iter() |
| .map(|arg| arg.into_data().to_pyarrow(py).unwrap()), |
| )?; |
| let range_tuple = PyTuple::new(py, vec![range.start, range.end])?; |
| let py_args = PyTuple::new(py, vec![py_values.as_any(), range_tuple.as_any()])?; |
| |
| self.evaluator |
| .bind(py) |
| .call_method1("evaluate", py_args) |
| .and_then(|v| v.extract::<PyScalarValue>()) |
| .map(|v| v.0) |
| }) |
| .map_err(to_datafusion_err) |
| } |
| |
| fn evaluate_all_with_rank( |
| &self, |
| num_rows: usize, |
| ranks_in_partition: &[Range<usize>], |
| ) -> Result<ArrayRef> { |
| Python::with_gil(|py| { |
| let ranks = ranks_in_partition |
| .iter() |
| .map(|r| PyTuple::new(py, vec![r.start, r.end])) |
| .collect::<PyResult<Vec<_>>>()?; |
| |
| // 1. cast args to Pyarrow array |
| let py_args = vec![ |
| num_rows.into_pyobject(py)?.into_any(), |
| PyList::new(py, ranks)?.into_any(), |
| ]; |
| |
| let py_args = PyTuple::new(py, py_args)?; |
| |
| // 2. call function |
| self.evaluator |
| .bind(py) |
| .call_method1("evaluate_all_with_rank", py_args) |
| .map(|v| { |
| let array_data = ArrayData::from_pyarrow_bound(&v).unwrap(); |
| make_array(array_data) |
| }) |
| }) |
| .map_err(to_datafusion_err) |
| } |
| |
| fn supports_bounded_execution(&self) -> bool { |
| Python::with_gil(|py| { |
| self.evaluator |
| .bind(py) |
| .call_method0("supports_bounded_execution") |
| .and_then(|v| v.extract()) |
| .unwrap_or(false) |
| }) |
| } |
| |
| fn uses_window_frame(&self) -> bool { |
| Python::with_gil(|py| { |
| self.evaluator |
| .bind(py) |
| .call_method0("uses_window_frame") |
| .and_then(|v| v.extract()) |
| .unwrap_or(false) |
| }) |
| } |
| |
| fn include_rank(&self) -> bool { |
| Python::with_gil(|py| { |
| self.evaluator |
| .bind(py) |
| .call_method0("include_rank") |
| .and_then(|v| v.extract()) |
| .unwrap_or(false) |
| }) |
| } |
| } |
| |
| pub fn to_rust_partition_evaluator(evaluator: PyObject) -> PartitionEvaluatorFactory { |
| Arc::new(move || -> Result<Box<dyn PartitionEvaluator>> { |
| let evaluator = Python::with_gil(|py| { |
| evaluator |
| .call0(py) |
| .map_err(|e| DataFusionError::Execution(e.to_string())) |
| })?; |
| Ok(Box::new(RustPartitionEvaluator::new(evaluator))) |
| }) |
| } |
| |
| /// Represents an WindowUDF |
| #[pyclass(frozen, name = "WindowUDF", module = "datafusion", subclass)] |
| #[derive(Debug, Clone)] |
| pub struct PyWindowUDF { |
| pub(crate) function: WindowUDF, |
| } |
| |
| #[pymethods] |
| impl PyWindowUDF { |
| #[new] |
| #[pyo3(signature=(name, evaluator, input_types, return_type, volatility))] |
| fn new( |
| name: &str, |
| evaluator: PyObject, |
| input_types: Vec<PyArrowType<DataType>>, |
| return_type: PyArrowType<DataType>, |
| volatility: &str, |
| ) -> PyResult<Self> { |
| let return_type = return_type.0; |
| let input_types = input_types.into_iter().map(|t| t.0).collect(); |
| |
| let function = WindowUDF::from(MultiColumnWindowUDF::new( |
| name, |
| input_types, |
| return_type, |
| parse_volatility(volatility)?, |
| to_rust_partition_evaluator(evaluator), |
| )); |
| Ok(Self { function }) |
| } |
| |
| /// creates a new PyExpr with the call of the udf |
| #[pyo3(signature = (*args))] |
| fn __call__(&self, args: Vec<PyExpr>) -> PyResult<PyExpr> { |
| let args = args.iter().map(|e| e.expr.clone()).collect(); |
| Ok(self.function.call(args).into()) |
| } |
| |
| #[staticmethod] |
| pub fn from_pycapsule(func: Bound<'_, PyAny>) -> PyDataFusionResult<Self> { |
| if func.hasattr("__datafusion_window_udf__")? { |
| let capsule = func.getattr("__datafusion_window_udf__")?.call0()?; |
| let capsule = capsule.downcast::<PyCapsule>().map_err(py_datafusion_err)?; |
| validate_pycapsule(capsule, "datafusion_window_udf")?; |
| |
| let udwf = unsafe { capsule.reference::<FFI_WindowUDF>() }; |
| let udwf: ForeignWindowUDF = udwf.try_into()?; |
| |
| Ok(Self { |
| function: udwf.into(), |
| }) |
| } else { |
| Err(crate::errors::PyDataFusionError::Common( |
| "__datafusion_window_udf__ does not exist on WindowUDF object.".to_string(), |
| )) |
| } |
| } |
| |
| fn __repr__(&self) -> PyResult<String> { |
| Ok(format!("WindowUDF({})", self.function.name())) |
| } |
| } |
| |
| #[derive(Hash, Eq, PartialEq)] |
| pub struct MultiColumnWindowUDF { |
| name: String, |
| signature: Signature, |
| return_type: DataType, |
| partition_evaluator_factory: PtrEq<PartitionEvaluatorFactory>, |
| } |
| |
| impl std::fmt::Debug for MultiColumnWindowUDF { |
| fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { |
| f.debug_struct("WindowUDF") |
| .field("name", &self.name) |
| .field("signature", &self.signature) |
| .field("return_type", &"<func>") |
| .field("partition_evaluator_factory", &"<FUNC>") |
| .finish() |
| } |
| } |
| |
| impl MultiColumnWindowUDF { |
| pub fn new( |
| name: impl Into<String>, |
| input_types: Vec<DataType>, |
| return_type: DataType, |
| volatility: Volatility, |
| partition_evaluator_factory: PartitionEvaluatorFactory, |
| ) -> Self { |
| let name = name.into(); |
| let signature = Signature::exact(input_types, volatility); |
| Self { |
| name, |
| signature, |
| return_type, |
| partition_evaluator_factory: partition_evaluator_factory.into(), |
| } |
| } |
| } |
| |
| impl WindowUDFImpl for MultiColumnWindowUDF { |
| fn as_any(&self) -> &dyn Any { |
| self |
| } |
| |
| fn name(&self) -> &str { |
| &self.name |
| } |
| |
| fn signature(&self) -> &Signature { |
| &self.signature |
| } |
| |
| fn field(&self, field_args: WindowUDFFieldArgs) -> Result<arrow::datatypes::FieldRef> { |
| // TODO: Should nullable always be `true`? |
| Ok(arrow::datatypes::Field::new(field_args.name(), self.return_type.clone(), true).into()) |
| } |
| |
| // TODO: Enable passing partition_evaluator_args to python? |
| fn partition_evaluator( |
| &self, |
| _partition_evaluator_args: PartitionEvaluatorArgs, |
| ) -> Result<Box<dyn PartitionEvaluator>> { |
| let _ = _partition_evaluator_args; |
| (self.partition_evaluator_factory)() |
| } |
| } |