blob: 9f56f74d7d0ba7233d7d2e6c85cdbdc1da84dfb2 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from pathlib import Path
import pyarrow as pa
import pytest
from datafusion import column
from datafusion.io import read_avro, read_csv, read_json, read_parquet
from .utils import range_table
def test_read_json_global_ctx(ctx):
path = Path(__file__).parent.resolve()
# Default
test_data_path = Path(path) / "data_test_context" / "data.json"
df = read_json(test_data_path)
result = df.collect()
assert result[0].column(0) == pa.array(["a", "b", "c"])
assert result[0].column(1) == pa.array([1, 2, 3])
# Schema
schema = pa.schema(
[
pa.field("A", pa.string(), nullable=True),
]
)
df = read_json(test_data_path, schema=schema)
result = df.collect()
assert result[0].column(0) == pa.array(["a", "b", "c"])
assert result[0].schema == schema
# File extension
test_data_path = Path(path) / "data_test_context" / "data.json"
df = read_json(test_data_path, file_extension=".json")
result = df.collect()
assert result[0].column(0) == pa.array(["a", "b", "c"])
assert result[0].column(1) == pa.array([1, 2, 3])
def test_read_parquet_global():
parquet_df = read_parquet(path="parquet/data/alltypes_plain.parquet")
parquet_df.show()
assert parquet_df is not None
path = Path.cwd() / "parquet/data/alltypes_plain.parquet"
parquet_df = read_parquet(path=path)
assert parquet_df is not None
def test_read_csv():
csv_df = read_csv(path="testing/data/csv/aggregate_test_100.csv")
csv_df.select(column("c1")).show()
def test_read_csv_list():
csv_df = read_csv(path=["testing/data/csv/aggregate_test_100.csv"])
expected = csv_df.count() * 2
double_csv_df = read_csv(
path=[
"testing/data/csv/aggregate_test_100.csv",
"testing/data/csv/aggregate_test_100.csv",
]
)
actual = double_csv_df.count()
double_csv_df.select(column("c1")).show()
assert actual == expected
def test_read_avro():
avro_df = read_avro(path="testing/data/avro/alltypes_plain.avro")
avro_df.show()
assert avro_df is not None
path = Path.cwd() / "testing/data/avro/alltypes_plain.avro"
avro_df = read_avro(path=path)
assert avro_df is not None
def test_arrow_c_stream_large_dataset(ctx):
"""DataFrame streaming yields batches incrementally using Arrow APIs.
This test constructs a DataFrame that would be far larger than available
memory if materialized. Use the public API
``pa.RecordBatchReader.from_stream(df)`` (which is same as
``pa.RecordBatchReader._import_from_c_capsule(df.__arrow_c_stream__())``)
to read record batches incrementally without collecting the full dataset,
so reading a handful of batches should not exhaust process memory.
"""
# Create a very large DataFrame using range; this would be terabytes if collected
df = range_table(ctx, 0, 1 << 40)
reader = pa.RecordBatchReader.from_stream(df)
# Track RSS before consuming batches
# RSS is a practical measure of RAM usage visible to the OS. It excludes memory
# that has been swapped out and provides a simple cross-platform-ish indicator
# (psutil normalizes per-OS sources).
psutil = pytest.importorskip("psutil")
process = psutil.Process()
start_rss = process.memory_info().rss
for _ in range(5):
batch = reader.read_next_batch()
assert batch is not None
assert len(batch) > 0
current_rss = process.memory_info().rss
# Ensure memory usage hasn't grown substantially (>50MB)
assert current_rss - start_rss < 50 * 1024 * 1024
def test_table_from_arrow_c_stream(ctx, fail_collect):
df = range_table(ctx, 0, 10)
table = pa.table(df)
assert table.shape == (10, 1)
assert table.column_names == ["value"]