blob: bb7505f7f6fec83a5ec3ed828fedfbfef4ecb526 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use arrow_schema::DataType;
use datafusion::error::Result as DataFusionResult;
use datafusion::functions_aggregate::sum::Sum;
use datafusion::logical_expr::function::AccumulatorArgs;
use datafusion::logical_expr::{Accumulator, AggregateUDF, AggregateUDFImpl, Signature};
use datafusion_ffi::udaf::FFI_AggregateUDF;
use pyo3::types::PyCapsule;
use pyo3::{pyclass, pymethods, Bound, PyResult, Python};
use std::any::Any;
use std::sync::Arc;
#[pyclass(name = "MySumUDF", module = "datafusion_ffi_example", subclass)]
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub(crate) struct MySumUDF {
inner: Arc<Sum>,
}
#[pymethods]
impl MySumUDF {
#[new]
fn new() -> Self {
Self {
inner: Arc::new(Sum::new()),
}
}
fn __datafusion_aggregate_udf__<'py>(
&self,
py: Python<'py>,
) -> PyResult<Bound<'py, PyCapsule>> {
let name = cr"datafusion_aggregate_udf".into();
let func = Arc::new(AggregateUDF::from(self.clone()));
let provider = FFI_AggregateUDF::from(func);
PyCapsule::new(py, provider, Some(name))
}
}
impl AggregateUDFImpl for MySumUDF {
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
"my_custom_sum"
}
fn signature(&self) -> &Signature {
self.inner.signature()
}
fn return_type(&self, arg_types: &[DataType]) -> DataFusionResult<DataType> {
self.inner.return_type(arg_types)
}
fn accumulator(&self, acc_args: AccumulatorArgs) -> DataFusionResult<Box<dyn Accumulator>> {
self.inner.accumulator(acc_args)
}
fn coerce_types(&self, arg_types: &[DataType]) -> DataFusionResult<Vec<DataType>> {
self.inner.coerce_types(arg_types)
}
}