| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from datafusion import udf, SessionContext |
| import pyarrow as pa |
| |
| |
| # Define a user-defined function (UDF) |
| def is_null(array: pa.Array) -> pa.Array: |
| return array.is_null() |
| |
| |
| is_null_arr = udf( |
| is_null, |
| [pa.int64()], |
| pa.bool_(), |
| "stable", |
| # This will be the name of the UDF in SQL |
| # If not specified it will by default the same as Python function name |
| name="is_null", |
| ) |
| |
| # Create a context |
| ctx = SessionContext() |
| |
| # Create a datafusion DataFrame from a Python dictionary |
| ctx.from_pydict({"a": [1, 2, 3], "b": [4, None, 6]}, name="t") |
| # Dataframe: |
| # +---+---+ |
| # | a | b | |
| # +---+---+ |
| # | 1 | 4 | |
| # | 2 | | |
| # | 3 | 6 | |
| # +---+---+ |
| |
| # Register UDF for use in SQL |
| ctx.register_udf(is_null_arr) |
| |
| # Query the DataFrame using SQL |
| result_df = ctx.sql("select a, is_null(b) as b_is_null from t") |
| # Dataframe: |
| # +---+-----------+ |
| # | a | b_is_null | |
| # +---+-----------+ |
| # | 1 | false | |
| # | 2 | true | |
| # | 3 | false | |
| # +---+-----------+ |
| assert result_df.to_pydict()["b_is_null"] == [False, True, False] |