blob: d6bbe3ab09e0b3c73cee52f6dcc0ad6cac4939a9 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from datafusion import udf, SessionContext
import pyarrow as pa
# Define a user-defined function (UDF)
def is_null(array: pa.Array) -> pa.Array:
return array.is_null()
is_null_arr = udf(
is_null,
[pa.int64()],
pa.bool_(),
"stable",
# This will be the name of the UDF in SQL
# If not specified it will by default the same as Python function name
name="is_null",
)
# Create a context
ctx = SessionContext()
# Create a datafusion DataFrame from a Python dictionary
ctx.from_pydict({"a": [1, 2, 3], "b": [4, None, 6]}, name="t")
# Dataframe:
# +---+---+
# | a | b |
# +---+---+
# | 1 | 4 |
# | 2 | |
# | 3 | 6 |
# +---+---+
# Register UDF for use in SQL
ctx.register_udf(is_null_arr)
# Query the DataFrame using SQL
result_df = ctx.sql("select a, is_null(b) as b_is_null from t")
# Dataframe:
# +---+-----------+
# | a | b_is_null |
# +---+-----------+
# | 1 | false |
# | 2 | true |
# | 3 | false |
# +---+-----------+
assert result_df.to_pydict()["b_is_null"] == [False, True, False]