| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import numpy as np |
| import pyarrow as pa |
| import pytest |
| |
| from datafusion import SessionContext, column, lit |
| from datafusion import functions as f |
| |
| |
| @pytest.fixture |
| def df(): |
| ctx = SessionContext() |
| |
| # create a RecordBatch and a new DataFrame from it |
| batch = pa.RecordBatch.from_arrays( |
| [ |
| pa.array([1, 2, 3]), |
| pa.array([4, 4, 6]), |
| pa.array([9, 8, 5]), |
| pa.array([True, True, False]), |
| ], |
| names=["a", "b", "c", "d"], |
| ) |
| return ctx.create_dataframe([[batch]]) |
| |
| |
| def test_built_in_aggregation(df): |
| col_a = column("a") |
| col_b = column("b") |
| col_c = column("c") |
| |
| agg_df = df.aggregate( |
| [], |
| [ |
| f.approx_distinct(col_b), |
| f.approx_median(col_b), |
| f.approx_percentile_cont(col_b, lit(0.5)), |
| f.approx_percentile_cont_with_weight(col_b, lit(0.6), lit(0.5)), |
| f.array_agg(col_b), |
| f.avg(col_a), |
| f.corr(col_a, col_b), |
| f.count(col_a), |
| f.covar(col_a, col_b), |
| f.covar_pop(col_a, col_c), |
| f.covar_samp(col_b, col_c), |
| # f.grouping(col_a), # No physical plan implemented yet |
| f.max(col_a), |
| f.mean(col_b), |
| f.median(col_b), |
| f.min(col_a), |
| f.sum(col_b), |
| f.stddev(col_a), |
| f.stddev_pop(col_b), |
| f.stddev_samp(col_c), |
| f.var(col_a), |
| f.var_pop(col_b), |
| f.var_samp(col_c), |
| ], |
| ) |
| result = agg_df.collect()[0] |
| values_a, values_b, values_c, values_d = df.collect()[0] |
| |
| assert result.column(0) == pa.array([2], type=pa.uint64()) |
| assert result.column(1) == pa.array([4]) |
| assert result.column(2) == pa.array([4]) |
| assert result.column(3) == pa.array([6]) |
| assert result.column(4) == pa.array([[4, 4, 6]]) |
| np.testing.assert_array_almost_equal( |
| result.column(5), np.average(values_a) |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(6), np.corrcoef(values_a, values_b)[0][1] |
| ) |
| assert result.column(7) == pa.array([len(values_a)]) |
| # Sample (co)variance -> ddof=1 |
| # Population (co)variance -> ddof=0 |
| np.testing.assert_array_almost_equal( |
| result.column(8), np.cov(values_a, values_b, ddof=1)[0][1] |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(9), np.cov(values_a, values_c, ddof=0)[0][1] |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(10), np.cov(values_b, values_c, ddof=1)[0][1] |
| ) |
| np.testing.assert_array_almost_equal(result.column(11), np.max(values_a)) |
| np.testing.assert_array_almost_equal(result.column(12), np.mean(values_b)) |
| np.testing.assert_array_almost_equal( |
| result.column(13), np.median(values_b) |
| ) |
| np.testing.assert_array_almost_equal(result.column(14), np.min(values_a)) |
| np.testing.assert_array_almost_equal( |
| result.column(15), np.sum(values_b.to_pylist()) |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(16), np.std(values_a, ddof=1) |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(17), np.std(values_b, ddof=0) |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(18), np.std(values_c, ddof=1) |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(19), np.var(values_a, ddof=1) |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(20), np.var(values_b, ddof=0) |
| ) |
| np.testing.assert_array_almost_equal( |
| result.column(21), np.var(values_c, ddof=1) |
| ) |
| |
| |
| def test_bit_add_or_xor(df): |
| |
| df = df.aggregate( |
| [], |
| [ |
| f.bit_and(column("a")), |
| f.bit_or(column("b")), |
| f.bit_xor(column("c")), |
| ], |
| ) |
| |
| result = df.collect() |
| result = result[0] |
| assert result.column(0) == pa.array([0]) |
| assert result.column(1) == pa.array([6]) |
| assert result.column(2) == pa.array([4]) |
| |
| |
| def test_bool_and_or(df): |
| |
| df = df.aggregate( |
| [], |
| [ |
| f.bool_and(column("d")), |
| f.bool_or(column("d")), |
| ], |
| ) |
| result = df.collect() |
| result = result[0] |
| assert result.column(0) == pa.array([False]) |
| assert result.column(1) == pa.array([True]) |