| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use std::sync::Arc; |
| |
| use pyo3::{prelude::*, types::PyTuple}; |
| |
| use datafusion::arrow::array::{make_array, Array, ArrayData, ArrayRef}; |
| use datafusion::arrow::datatypes::DataType; |
| use datafusion::arrow::pyarrow::{FromPyArrow, PyArrowType, ToPyArrow}; |
| use datafusion::error::DataFusionError; |
| use datafusion::physical_plan::functions::make_scalar_function; |
| use datafusion::physical_plan::udf::ScalarUDF; |
| use datafusion_expr::create_udf; |
| use datafusion_expr::function::ScalarFunctionImplementation; |
| |
| use crate::expr::PyExpr; |
| use crate::utils::parse_volatility; |
| |
| /// Create a DataFusion's UDF implementation from a python function |
| /// that expects pyarrow arrays. This is more efficient as it performs |
| /// a zero-copy of the contents. |
| fn to_rust_function(func: PyObject) -> ScalarFunctionImplementation { |
| make_scalar_function( |
| move |args: &[ArrayRef]| -> Result<ArrayRef, DataFusionError> { |
| Python::with_gil(|py| { |
| // 1. cast args to Pyarrow arrays |
| let py_args = args |
| .iter() |
| .map(|arg| arg.into_data().to_pyarrow(py).unwrap()) |
| .collect::<Vec<_>>(); |
| let py_args = PyTuple::new(py, py_args); |
| |
| // 2. call function |
| let value = func |
| .as_ref(py) |
| .call(py_args, None) |
| .map_err(|e| DataFusionError::Execution(format!("{e:?}")))?; |
| |
| // 3. cast to arrow::array::Array |
| let array_data = ArrayData::from_pyarrow(value).unwrap(); |
| Ok(make_array(array_data)) |
| }) |
| }, |
| ) |
| } |
| |
| /// Represents a PyScalarUDF |
| #[pyclass(name = "ScalarUDF", module = "datafusion", subclass)] |
| #[derive(Debug, Clone)] |
| pub struct PyScalarUDF { |
| pub(crate) function: ScalarUDF, |
| } |
| |
| #[pymethods] |
| impl PyScalarUDF { |
| #[new(name, func, input_types, return_type, volatility)] |
| fn new( |
| name: &str, |
| func: PyObject, |
| input_types: PyArrowType<Vec<DataType>>, |
| return_type: PyArrowType<DataType>, |
| volatility: &str, |
| ) -> PyResult<Self> { |
| let function = create_udf( |
| name, |
| input_types.0, |
| Arc::new(return_type.0), |
| parse_volatility(volatility)?, |
| to_rust_function(func), |
| ); |
| Ok(Self { function }) |
| } |
| |
| /// creates a new PyExpr with the call of the udf |
| #[pyo3(signature = (*args))] |
| fn __call__(&self, args: Vec<PyExpr>) -> PyResult<PyExpr> { |
| let args = args.iter().map(|e| e.expr.clone()).collect(); |
| Ok(self.function.call(args).into()) |
| } |
| |
| fn __repr__(&self) -> PyResult<String> { |
| Ok(format!("ScalarUDF({})", self.function.name)) |
| } |
| } |