| <!DOCTYPE html> |
| |
| <html lang="en" data-content_root="../../"> |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" /> |
| |
| <title>Expressions — Apache Arrow DataFusion documentation</title> |
| |
| <link href="../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet"> |
| <link href="../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet"> |
| |
| |
| <link rel="stylesheet" |
| href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2"> |
| <link rel="preload" as="font" type="font/woff2" crossorigin |
| href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2"> |
| |
| |
| |
| |
| |
| <link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=8f2a1f02" /> |
| <link rel="stylesheet" type="text/css" href="../../_static/styles/pydata-sphinx-theme.css?v=1140d252" /> |
| <link rel="stylesheet" type="text/css" href="../../_static/graphviz.css?v=4ae1632d" /> |
| <link rel="stylesheet" type="text/css" href="../../_static/theme_overrides.css?v=dca7052a" /> |
| |
| <link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"> |
| |
| <script src="../../_static/documentation_options.js?v=8a448e45"></script> |
| <script src="../../_static/doctools.js?v=9bcbadda"></script> |
| <script src="../../_static/sphinx_highlight.js?v=dc90522c"></script> |
| <link rel="index" title="Index" href="../../genindex.html" /> |
| <link rel="search" title="Search" href="../../search.html" /> |
| <link rel="next" title="Joins" href="joins.html" /> |
| <link rel="prev" title="Column Selections" href="select-and-filter.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="en"> |
| |
| |
| <!-- Google Analytics --> |
| |
| </head> |
| <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80"> |
| |
| <div class="container-fluid" id="banner"></div> |
| |
| |
| |
| |
| <div class="container-xl"> |
| <div class="row"> |
| |
| |
| <!-- Only show if we have sidebars configured, else just a small margin --> |
| <div class="col-12 col-md-3 bd-sidebar"> |
| <div class="sidebar-start-items"> |
| <a class="navbar-brand" href="../../index.html"> |
| <img src="../../_static/images/2x_bgwhite_original.png" class="logo" alt="logo"> |
| </a> |
| |
| <form class="bd-search d-flex align-items-center" action="../../search.html" method="get"> |
| <i class="icon fas fa-search"></i> |
| <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" > |
| </form> |
| |
| <nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation"> |
| <div class="bd-toc-item active"> |
| |
| <p aria-level="2" class="caption" role="heading"> |
| <span class="caption-text"> |
| LINKS |
| </span> |
| </p> |
| <ul class="nav bd-sidenav"> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://github.com/apache/datafusion-python"> |
| Github and Issue Tracker |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://docs.rs/datafusion/latest/datafusion/"> |
| Rust's API Docs |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://github.com/apache/datafusion/blob/main/CODE_OF_CONDUCT.md"> |
| Code of conduct |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference external" href="https://github.com/apache/datafusion-python/tree/main/examples"> |
| Examples |
| </a> |
| </li> |
| </ul> |
| <p aria-level="2" class="caption" role="heading"> |
| <span class="caption-text"> |
| USER GUIDE |
| </span> |
| </p> |
| <ul class="current nav bd-sidenav"> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../introduction.html"> |
| Introduction |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../basics.html"> |
| Concepts |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../data-sources.html"> |
| Data Sources |
| </a> |
| </li> |
| <li class="toctree-l1 has-children"> |
| <a class="reference internal" href="../dataframe/index.html"> |
| DataFrames |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/> |
| <label for="toctree-checkbox-1"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../dataframe/rendering.html"> |
| HTML Rendering in Jupyter |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1 current active has-children"> |
| <a class="reference internal" href="index.html"> |
| Common Operations |
| </a> |
| <input checked="" class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/> |
| <label for="toctree-checkbox-2"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul class="current"> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="views.html"> |
| Registering Views |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="basic-info.html"> |
| Basic Operations |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="select-and-filter.html"> |
| Column Selections |
| </a> |
| </li> |
| <li class="toctree-l2 current active"> |
| <a class="current reference internal" href="#"> |
| Expressions |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="joins.html"> |
| Joins |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="functions.html"> |
| Functions |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="aggregations.html"> |
| Aggregation |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="windows.html"> |
| Window Functions |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="udf-and-udfa.html"> |
| User-Defined Functions |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1 has-children"> |
| <a class="reference internal" href="../io/index.html"> |
| IO |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/> |
| <label for="toctree-checkbox-3"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../io/arrow.html"> |
| Arrow |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../io/avro.html"> |
| Avro |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../io/csv.html"> |
| CSV |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../io/json.html"> |
| JSON |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../io/parquet.html"> |
| Parquet |
| </a> |
| </li> |
| <li class="toctree-l2"> |
| <a class="reference internal" href="../io/table_provider.html"> |
| Custom Table Provider |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../configuration.html"> |
| Configuration |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../sql.html"> |
| SQL |
| </a> |
| </li> |
| </ul> |
| <p aria-level="2" class="caption" role="heading"> |
| <span class="caption-text"> |
| CONTRIBUTOR GUIDE |
| </span> |
| </p> |
| <ul class="nav bd-sidenav"> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../../contributor-guide/introduction.html"> |
| Introduction |
| </a> |
| </li> |
| <li class="toctree-l1"> |
| <a class="reference internal" href="../../contributor-guide/ffi.html"> |
| Python Extensions |
| </a> |
| </li> |
| </ul> |
| <p aria-level="2" class="caption" role="heading"> |
| <span class="caption-text"> |
| API |
| </span> |
| </p> |
| <ul class="nav bd-sidenav"> |
| <li class="toctree-l1 has-children"> |
| <a class="reference internal" href="../../autoapi/index.html"> |
| API Reference |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/> |
| <label for="toctree-checkbox-4"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l2 has-children"> |
| <a class="reference internal" href="../../autoapi/datafusion/index.html"> |
| datafusion |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/> |
| <label for="toctree-checkbox-5"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/catalog/index.html"> |
| datafusion.catalog |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/context/index.html"> |
| datafusion.context |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/dataframe/index.html"> |
| datafusion.dataframe |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/dataframe_formatter/index.html"> |
| datafusion.dataframe_formatter |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/expr/index.html"> |
| datafusion.expr |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/functions/index.html"> |
| datafusion.functions |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/html_formatter/index.html"> |
| datafusion.html_formatter |
| </a> |
| </li> |
| <li class="toctree-l3 has-children"> |
| <a class="reference internal" href="../../autoapi/datafusion/input/index.html"> |
| datafusion.input |
| </a> |
| <input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/> |
| <label for="toctree-checkbox-6"> |
| <i class="fas fa-chevron-down"> |
| </i> |
| </label> |
| <ul> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="../../autoapi/datafusion/input/base/index.html"> |
| datafusion.input.base |
| </a> |
| </li> |
| <li class="toctree-l4"> |
| <a class="reference internal" href="../../autoapi/datafusion/input/location/index.html"> |
| datafusion.input.location |
| </a> |
| </li> |
| </ul> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/io/index.html"> |
| datafusion.io |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/object_store/index.html"> |
| datafusion.object_store |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/plan/index.html"> |
| datafusion.plan |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/record_batch/index.html"> |
| datafusion.record_batch |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/substrait/index.html"> |
| datafusion.substrait |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/unparser/index.html"> |
| datafusion.unparser |
| </a> |
| </li> |
| <li class="toctree-l3"> |
| <a class="reference internal" href="../../autoapi/datafusion/user_defined/index.html"> |
| datafusion.user_defined |
| </a> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| </li> |
| </ul> |
| |
| |
| </div> |
| </nav> |
| </div> |
| <div class="sidebar-end-items"> |
| </div> |
| </div> |
| |
| |
| |
| |
| <div class="d-none d-xl-block col-xl-2 bd-toc"> |
| |
| |
| <div class="toc-item"> |
| |
| <div class="tocsection onthispage pt-5 pb-3"> |
| <i class="fas fa-list"></i> On this page |
| </div> |
| |
| <nav id="bd-toc-nav"> |
| <ul class="visible nav section-nav flex-column"> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#column"> |
| Column |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#literal"> |
| Literal |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#boolean"> |
| Boolean |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#arrays"> |
| Arrays |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#structs"> |
| Structs |
| </a> |
| </li> |
| <li class="toc-h2 nav-item toc-entry"> |
| <a class="reference internal nav-link" href="#functions"> |
| Functions |
| </a> |
| </li> |
| </ul> |
| |
| </nav> |
| </div> |
| |
| <div class="toc-item"> |
| |
| </div> |
| |
| |
| </div> |
| |
| |
| |
| |
| |
| |
| <main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main"> |
| |
| <div> |
| |
| <section id="expressions"> |
| <span id="id1"></span><h1>Expressions<a class="headerlink" href="#expressions" title="Link to this heading">¶</a></h1> |
| <p>In DataFusion an expression is an abstraction that represents a computation. |
| Expressions are used as the primary inputs and outputs for most functions within |
| DataFusion. As such, expressions can be combined to create expression trees, a |
| concept shared across most compilers and databases.</p> |
| <section id="column"> |
| <h2>Column<a class="headerlink" href="#column" title="Link to this heading">¶</a></h2> |
| <p>The first expression most new users will interact with is the Column, which is created by calling <a class="reference internal" href="../../autoapi/datafusion/index.html#datafusion.col" title="datafusion.col"><code class="xref py py-func docutils literal notranslate"><span class="pre">col()</span></code></a>. |
| This expression represents a column within a DataFrame. The function <a class="reference internal" href="../../autoapi/datafusion/index.html#datafusion.col" title="datafusion.col"><code class="xref py py-func docutils literal notranslate"><span class="pre">col()</span></code></a> takes as in input a string |
| and returns an expression as it’s output.</p> |
| </section> |
| <section id="literal"> |
| <h2>Literal<a class="headerlink" href="#literal" title="Link to this heading">¶</a></h2> |
| <p>Literal expressions represent a single value. These are helpful in a wide range of operations where |
| a specific, known value is of interest. You can create a literal expression using the function <a class="reference internal" href="../../autoapi/datafusion/index.html#datafusion.lit" title="datafusion.lit"><code class="xref py py-func docutils literal notranslate"><span class="pre">lit()</span></code></a>. |
| The type of the object passed to the <a class="reference internal" href="../../autoapi/datafusion/index.html#datafusion.lit" title="datafusion.lit"><code class="xref py py-func docutils literal notranslate"><span class="pre">lit()</span></code></a> function will be used to convert it to a known data type.</p> |
| <p>In the following example we create expressions for the column named <cite>color</cite> and the literal scalar string <cite>red</cite>. |
| The resultant variable <cite>red_units</cite> is itself also an expression.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">1</span><span class="p">]:</span> <span class="n">red_units</span> <span class="o">=</span> <span class="n">col</span><span class="p">(</span><span class="s2">"color"</span><span class="p">)</span> <span class="o">==</span> <span class="n">lit</span><span class="p">(</span><span class="s2">"red"</span><span class="p">)</span> |
| </pre></div> |
| </div> |
| </section> |
| <section id="boolean"> |
| <h2>Boolean<a class="headerlink" href="#boolean" title="Link to this heading">¶</a></h2> |
| <p>When combining expressions that evaluate to a boolean value, you can combine these expressions using boolean operators. |
| It is important to note that in order to combine these expressions, you <em>must</em> use bitwise operators. See the following |
| examples for the and, or, and not operations.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">2</span><span class="p">]:</span> <span class="n">red_or_green_units</span> <span class="o">=</span> <span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"color"</span><span class="p">)</span> <span class="o">==</span> <span class="n">lit</span><span class="p">(</span><span class="s2">"red"</span><span class="p">))</span> <span class="o">|</span> <span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"color"</span><span class="p">)</span> <span class="o">==</span> <span class="n">lit</span><span class="p">(</span><span class="s2">"green"</span><span class="p">))</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">3</span><span class="p">]:</span> <span class="n">heavy_red_units</span> <span class="o">=</span> <span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"color"</span><span class="p">)</span> <span class="o">==</span> <span class="n">lit</span><span class="p">(</span><span class="s2">"red"</span><span class="p">))</span> <span class="o">&</span> <span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"weight"</span><span class="p">)</span> <span class="o">></span> <span class="n">lit</span><span class="p">(</span><span class="mi">42</span><span class="p">))</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">4</span><span class="p">]:</span> <span class="n">not_red_units</span> <span class="o">=</span> <span class="o">~</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"color"</span><span class="p">)</span> <span class="o">==</span> <span class="n">lit</span><span class="p">(</span><span class="s2">"red"</span><span class="p">))</span> |
| </pre></div> |
| </div> |
| </section> |
| <section id="arrays"> |
| <h2>Arrays<a class="headerlink" href="#arrays" title="Link to this heading">¶</a></h2> |
| <p>For columns that contain arrays of values, you can access individual elements of the array by index |
| using bracket indexing. This is similar to calling the function |
| <a class="reference internal" href="../../autoapi/datafusion/functions/index.html#datafusion.functions.array_element" title="datafusion.functions.array_element"><code class="xref py py-func docutils literal notranslate"><span class="pre">datafusion.functions.array_element()</span></code></a>, except that array indexing using brackets is 0 based, |
| similar to Python arrays and <code class="docutils literal notranslate"><span class="pre">array_element</span></code> is 1 based indexing to be compatible with other SQL |
| approaches.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">5</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion</span><span class="w"> </span><span class="kn">import</span> <span class="n">SessionContext</span><span class="p">,</span> <span class="n">col</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">6</span><span class="p">]:</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">SessionContext</span><span class="p">()</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">7</span><span class="p">]:</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">({</span><span class="s2">"a"</span><span class="p">:</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]]})</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">8</span><span class="p">]:</span> <span class="n">df</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"a"</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="s2">"a0"</span><span class="p">))</span> |
| <span class="n">Out</span><span class="p">[</span><span class="mi">8</span><span class="p">]:</span> |
| <span class="n">DataFrame</span><span class="p">()</span> |
| <span class="o">+----+</span> |
| <span class="o">|</span> <span class="n">a0</span> <span class="o">|</span> |
| <span class="o">+----+</span> |
| <span class="o">|</span> <span class="mi">1</span> <span class="o">|</span> |
| <span class="o">|</span> <span class="mi">4</span> <span class="o">|</span> |
| <span class="o">+----+</span> |
| </pre></div> |
| </div> |
| <div class="admonition warning"> |
| <p class="admonition-title">Warning</p> |
| <p>Indexing an element of an array via <code class="docutils literal notranslate"><span class="pre">[]</span></code> starts at index 0 whereas |
| <a class="reference internal" href="../../autoapi/datafusion/functions/index.html#datafusion.functions.array_element" title="datafusion.functions.array_element"><code class="xref py py-func docutils literal notranslate"><span class="pre">array_element()</span></code></a> starts at index 1.</p> |
| </div> |
| <p>Starting in DataFusion 49.0.0 you can also create slices of array elements using |
| slice syntax from Python.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">9</span><span class="p">]:</span> <span class="n">df</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"a"</span><span class="p">)[</span><span class="mi">1</span><span class="p">:</span><span class="mi">3</span><span class="p">]</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="s2">"second_two_elements"</span><span class="p">))</span> |
| <span class="n">Out</span><span class="p">[</span><span class="mi">9</span><span class="p">]:</span> |
| <span class="n">DataFrame</span><span class="p">()</span> |
| <span class="o">+---------------------+</span> |
| <span class="o">|</span> <span class="n">second_two_elements</span> <span class="o">|</span> |
| <span class="o">+---------------------+</span> |
| <span class="o">|</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">|</span> |
| <span class="o">|</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]</span> <span class="o">|</span> |
| <span class="o">+---------------------+</span> |
| </pre></div> |
| </div> |
| <p>To check if an array is empty, you can use the function <a class="reference internal" href="../../autoapi/datafusion/functions/index.html#datafusion.functions.array_empty" title="datafusion.functions.array_empty"><code class="xref py py-func docutils literal notranslate"><span class="pre">datafusion.functions.array_empty()</span></code></a> or <cite>datafusion.functions.empty</cite>. |
| This function returns a boolean indicating whether the array is empty.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">10</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion</span><span class="w"> </span><span class="kn">import</span> <span class="n">SessionContext</span><span class="p">,</span> <span class="n">col</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">11</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion.functions</span><span class="w"> </span><span class="kn">import</span> <span class="n">array_empty</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">12</span><span class="p">]:</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">SessionContext</span><span class="p">()</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">13</span><span class="p">]:</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">({</span><span class="s2">"a"</span><span class="p">:</span> <span class="p">[[],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]]})</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">14</span><span class="p">]:</span> <span class="n">df</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">array_empty</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"a"</span><span class="p">))</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="s2">"is_empty"</span><span class="p">))</span> |
| <span class="n">Out</span><span class="p">[</span><span class="mi">14</span><span class="p">]:</span> |
| <span class="n">DataFrame</span><span class="p">()</span> |
| <span class="o">+----------+</span> |
| <span class="o">|</span> <span class="n">is_empty</span> <span class="o">|</span> |
| <span class="o">+----------+</span> |
| <span class="o">|</span> <span class="n">true</span> <span class="o">|</span> |
| <span class="o">|</span> <span class="n">false</span> <span class="o">|</span> |
| <span class="o">+----------+</span> |
| </pre></div> |
| </div> |
| <p>In this example, the <cite>is_empty</cite> column will contain <cite>True</cite> for the first row and <cite>False</cite> for the second row.</p> |
| <p>To get the total number of elements in an array, you can use the function <a class="reference internal" href="../../autoapi/datafusion/functions/index.html#datafusion.functions.cardinality" title="datafusion.functions.cardinality"><code class="xref py py-func docutils literal notranslate"><span class="pre">datafusion.functions.cardinality()</span></code></a>. |
| This function returns an integer indicating the total number of elements in the array.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">15</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion</span><span class="w"> </span><span class="kn">import</span> <span class="n">SessionContext</span><span class="p">,</span> <span class="n">col</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">16</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion.functions</span><span class="w"> </span><span class="kn">import</span> <span class="n">cardinality</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">17</span><span class="p">]:</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">SessionContext</span><span class="p">()</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">18</span><span class="p">]:</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">({</span><span class="s2">"a"</span><span class="p">:</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]]})</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">19</span><span class="p">]:</span> <span class="n">df</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">cardinality</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"a"</span><span class="p">))</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="s2">"num_elements"</span><span class="p">))</span> |
| <span class="n">Out</span><span class="p">[</span><span class="mi">19</span><span class="p">]:</span> |
| <span class="n">DataFrame</span><span class="p">()</span> |
| <span class="o">+--------------+</span> |
| <span class="o">|</span> <span class="n">num_elements</span> <span class="o">|</span> |
| <span class="o">+--------------+</span> |
| <span class="o">|</span> <span class="mi">3</span> <span class="o">|</span> |
| <span class="o">|</span> <span class="mi">3</span> <span class="o">|</span> |
| <span class="o">+--------------+</span> |
| </pre></div> |
| </div> |
| <p>In this example, the <cite>num_elements</cite> column will contain <cite>3</cite> for both rows.</p> |
| <p>To concatenate two arrays, you can use the function <a class="reference internal" href="../../autoapi/datafusion/functions/index.html#datafusion.functions.array_cat" title="datafusion.functions.array_cat"><code class="xref py py-func docutils literal notranslate"><span class="pre">datafusion.functions.array_cat()</span></code></a> or <a class="reference internal" href="../../autoapi/datafusion/functions/index.html#datafusion.functions.array_concat" title="datafusion.functions.array_concat"><code class="xref py py-func docutils literal notranslate"><span class="pre">datafusion.functions.array_concat()</span></code></a>. |
| These functions return a new array that is the concatenation of the input arrays.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">20</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion</span><span class="w"> </span><span class="kn">import</span> <span class="n">SessionContext</span><span class="p">,</span> <span class="n">col</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">21</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion.functions</span><span class="w"> </span><span class="kn">import</span> <span class="n">array_cat</span><span class="p">,</span> <span class="n">array_concat</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">22</span><span class="p">]:</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">SessionContext</span><span class="p">()</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">23</span><span class="p">]:</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">({</span><span class="s2">"a"</span><span class="p">:</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]],</span> <span class="s2">"b"</span><span class="p">:</span> <span class="p">[[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]]})</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">24</span><span class="p">]:</span> <span class="n">df</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">array_cat</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"a"</span><span class="p">),</span> <span class="n">col</span><span class="p">(</span><span class="s2">"b"</span><span class="p">))</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="s2">"concatenated_array"</span><span class="p">))</span> |
| <span class="n">Out</span><span class="p">[</span><span class="mi">24</span><span class="p">]:</span> |
| <span class="n">DataFrame</span><span class="p">()</span> |
| <span class="o">+--------------------+</span> |
| <span class="o">|</span> <span class="n">concatenated_array</span> <span class="o">|</span> |
| <span class="o">+--------------------+</span> |
| <span class="o">|</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]</span> <span class="o">|</span> |
| <span class="o">+--------------------+</span> |
| </pre></div> |
| </div> |
| <p>In this example, the <cite>concatenated_array</cite> column will contain <cite>[1, 2, 3, 4, 5, 6]</cite>.</p> |
| <p>To repeat the elements of an array a specified number of times, you can use the function <a class="reference internal" href="../../autoapi/datafusion/functions/index.html#datafusion.functions.array_repeat" title="datafusion.functions.array_repeat"><code class="xref py py-func docutils literal notranslate"><span class="pre">datafusion.functions.array_repeat()</span></code></a>. |
| This function returns a new array with the elements repeated.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">25</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion</span><span class="w"> </span><span class="kn">import</span> <span class="n">SessionContext</span><span class="p">,</span> <span class="n">col</span><span class="p">,</span> <span class="n">literal</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">26</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion.functions</span><span class="w"> </span><span class="kn">import</span> <span class="n">array_repeat</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">27</span><span class="p">]:</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">SessionContext</span><span class="p">()</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">28</span><span class="p">]:</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">({</span><span class="s2">"a"</span><span class="p">:</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]]})</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">29</span><span class="p">]:</span> <span class="n">df</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">array_repeat</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"a"</span><span class="p">),</span> <span class="n">literal</span><span class="p">(</span><span class="mi">2</span><span class="p">))</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="s2">"repeated_array"</span><span class="p">))</span> |
| <span class="n">Out</span><span class="p">[</span><span class="mi">29</span><span class="p">]:</span> |
| <span class="n">DataFrame</span><span class="p">()</span> |
| <span class="o">+------------------------+</span> |
| <span class="o">|</span> <span class="n">repeated_array</span> <span class="o">|</span> |
| <span class="o">+------------------------+</span> |
| <span class="o">|</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">]]</span> <span class="o">|</span> |
| <span class="o">+------------------------+</span> |
| </pre></div> |
| </div> |
| <p>In this example, the <cite>repeated_array</cite> column will contain <cite>[[1, 2, 3], [1, 2, 3]]</cite>.</p> |
| </section> |
| <section id="structs"> |
| <h2>Structs<a class="headerlink" href="#structs" title="Link to this heading">¶</a></h2> |
| <p>Columns that contain struct elements can be accessed using the bracket notation as if they were |
| Python dictionary style objects. This expects a string key as the parameter passed.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">30</span><span class="p">]:</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">SessionContext</span><span class="p">()</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">31</span><span class="p">]:</span> <span class="n">data</span> <span class="o">=</span> <span class="p">{</span><span class="s2">"a"</span><span class="p">:</span> <span class="p">[{</span><span class="s2">"size"</span><span class="p">:</span> <span class="mi">15</span><span class="p">,</span> <span class="s2">"color"</span><span class="p">:</span> <span class="s2">"green"</span><span class="p">},</span> <span class="p">{</span><span class="s2">"size"</span><span class="p">:</span> <span class="mi">10</span><span class="p">,</span> <span class="s2">"color"</span><span class="p">:</span> <span class="s2">"blue"</span><span class="p">}]}</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">32</span><span class="p">]:</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">33</span><span class="p">]:</span> <span class="n">df</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"a"</span><span class="p">)[</span><span class="s2">"size"</span><span class="p">]</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="s2">"a_size"</span><span class="p">))</span> |
| <span class="n">Out</span><span class="p">[</span><span class="mi">33</span><span class="p">]:</span> |
| <span class="n">DataFrame</span><span class="p">()</span> |
| <span class="o">+--------+</span> |
| <span class="o">|</span> <span class="n">a_size</span> <span class="o">|</span> |
| <span class="o">+--------+</span> |
| <span class="o">|</span> <span class="mi">15</span> <span class="o">|</span> |
| <span class="o">|</span> <span class="mi">10</span> <span class="o">|</span> |
| <span class="o">+--------+</span> |
| </pre></div> |
| </div> |
| </section> |
| <section id="functions"> |
| <h2>Functions<a class="headerlink" href="#functions" title="Link to this heading">¶</a></h2> |
| <p>As mentioned before, most functions in DataFusion return an expression at their output. This allows us to create |
| a wide variety of expressions built up from other expressions. For example, <a class="reference internal" href="../../autoapi/datafusion/expr/index.html#datafusion.expr.Expr.alias" title="datafusion.expr.Expr.alias"><code class="xref py py-func docutils literal notranslate"><span class="pre">alias()</span></code></a> is a function that takes |
| as it input a single expression and returns an expression in which the name of the expression has changed.</p> |
| <p>The following example shows a series of expressions that are built up from functions operating on expressions.</p> |
| <div class="highlight-ipython notranslate"><div class="highlight"><pre><span></span><span class="n">In</span> <span class="p">[</span><span class="mi">34</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion</span><span class="w"> </span><span class="kn">import</span> <span class="n">SessionContext</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">35</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion</span><span class="w"> </span><span class="kn">import</span> <span class="n">column</span><span class="p">,</span> <span class="n">lit</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">36</span><span class="p">]:</span> <span class="kn">from</span><span class="w"> </span><span class="nn">datafusion</span><span class="w"> </span><span class="kn">import</span> <span class="n">functions</span> <span class="k">as</span> <span class="n">f</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">37</span><span class="p">]:</span> <span class="kn">import</span><span class="w"> </span><span class="nn">random</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">38</span><span class="p">]:</span> <span class="n">ctx</span> <span class="o">=</span> <span class="n">SessionContext</span><span class="p">()</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">39</span><span class="p">]:</span> <span class="n">df</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">from_pydict</span><span class="p">(</span> |
| <span class="o">....</span><span class="p">:</span> <span class="p">{</span> |
| <span class="o">....</span><span class="p">:</span> <span class="s2">"name"</span><span class="p">:</span> <span class="p">[</span><span class="s2">"Albert"</span><span class="p">,</span> <span class="s2">"Becca"</span><span class="p">,</span> <span class="s2">"Carlos"</span><span class="p">,</span> <span class="s2">"Dante"</span><span class="p">],</span> |
| <span class="o">....</span><span class="p">:</span> <span class="s2">"age"</span><span class="p">:</span> <span class="p">[</span><span class="mi">42</span><span class="p">,</span> <span class="mi">67</span><span class="p">,</span> <span class="mi">27</span><span class="p">,</span> <span class="mi">71</span><span class="p">],</span> |
| <span class="o">....</span><span class="p">:</span> <span class="s2">"years_in_position"</span><span class="p">:</span> <span class="p">[</span><span class="mi">13</span><span class="p">,</span> <span class="mi">21</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">54</span><span class="p">],</span> |
| <span class="o">....</span><span class="p">:</span> <span class="p">},</span> |
| <span class="o">....</span><span class="p">:</span> <span class="n">name</span><span class="o">=</span><span class="s2">"employees"</span> |
| <span class="o">....</span><span class="p">:</span> <span class="p">)</span> |
| <span class="o">....</span><span class="p">:</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">40</span><span class="p">]:</span> <span class="n">age_col</span> <span class="o">=</span> <span class="n">col</span><span class="p">(</span><span class="s2">"age"</span><span class="p">)</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">41</span><span class="p">]:</span> <span class="n">renamed_age</span> <span class="o">=</span> <span class="n">age_col</span><span class="o">.</span><span class="n">alias</span><span class="p">(</span><span class="s2">"age_in_years"</span><span class="p">)</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">42</span><span class="p">]:</span> <span class="n">start_age</span> <span class="o">=</span> <span class="n">age_col</span> <span class="o">-</span> <span class="n">col</span><span class="p">(</span><span class="s2">"years_in_position"</span><span class="p">)</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">43</span><span class="p">]:</span> <span class="n">started_young</span> <span class="o">=</span> <span class="n">start_age</span> <span class="o"><</span> <span class="n">lit</span><span class="p">(</span><span class="mi">18</span><span class="p">)</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">44</span><span class="p">]:</span> <span class="n">can_retire</span> <span class="o">=</span> <span class="n">age_col</span> <span class="o">></span> <span class="n">lit</span><span class="p">(</span><span class="mi">65</span><span class="p">)</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">45</span><span class="p">]:</span> <span class="n">long_timer</span> <span class="o">=</span> <span class="n">started_young</span> <span class="o">&</span> <span class="n">can_retire</span> |
| |
| <span class="n">In</span> <span class="p">[</span><span class="mi">46</span><span class="p">]:</span> <span class="n">df</span><span class="o">.</span><span class="n">filter</span><span class="p">(</span><span class="n">long_timer</span><span class="p">)</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">col</span><span class="p">(</span><span class="s2">"name"</span><span class="p">),</span> <span class="n">renamed_age</span><span class="p">,</span> <span class="n">col</span><span class="p">(</span><span class="s2">"years_in_position"</span><span class="p">))</span> |
| <span class="n">Out</span><span class="p">[</span><span class="mi">46</span><span class="p">]:</span> |
| <span class="n">DataFrame</span><span class="p">()</span> |
| <span class="o">+-------+--------------+-------------------+</span> |
| <span class="o">|</span> <span class="n">name</span> <span class="o">|</span> <span class="n">age_in_years</span> <span class="o">|</span> <span class="n">years_in_position</span> <span class="o">|</span> |
| <span class="o">+-------+--------------+-------------------+</span> |
| <span class="o">|</span> <span class="n">Dante</span> <span class="o">|</span> <span class="mi">71</span> <span class="o">|</span> <span class="mi">54</span> <span class="o">|</span> |
| <span class="o">+-------+--------------+-------------------+</span> |
| </pre></div> |
| </div> |
| </section> |
| </section> |
| |
| |
| </div> |
| |
| |
| <!-- Previous / next buttons --> |
| <div class='prev-next-area'> |
| <a class='left-prev' id="prev-link" href="select-and-filter.html" title="previous page"> |
| <i class="fas fa-angle-left"></i> |
| <div class="prev-next-info"> |
| <p class="prev-next-subtitle">previous</p> |
| <p class="prev-next-title">Column Selections</p> |
| </div> |
| </a> |
| <a class='right-next' id="next-link" href="joins.html" title="next page"> |
| <div class="prev-next-info"> |
| <p class="prev-next-subtitle">next</p> |
| <p class="prev-next-title">Joins</p> |
| </div> |
| <i class="fas fa-angle-right"></i> |
| </a> |
| </div> |
| |
| </main> |
| |
| |
| </div> |
| </div> |
| |
| <script src="../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script> |
| |
| <!-- Based on pydata_sphinx_theme/footer.html --> |
| <footer class="footer mt-5 mt-md-0"> |
| <div class="container"> |
| |
| <div class="footer-item"> |
| <p class="copyright"> |
| © Copyright 2019-2024, Apache Software Foundation.<br> |
| </p> |
| </div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="http://sphinx-doc.org/">Sphinx</a> 8.1.3.<br> |
| </p> |
| </div> |
| |
| <div class="footer-item"> |
| <p>Apache Arrow DataFusion, Arrow DataFusion, Apache, the Apache feather logo, and the Apache Arrow DataFusion project logo</p> |
| <p>are either registered trademarks or trademarks of The Apache Software Foundation in the United States and other countries.</p> |
| </div> |
| </div> |
| </footer> |
| |
| |
| </body> |
| </html> |