blob: a6c0475525f206166da23445214a395f0da3b599 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pyarrow as pa
import pytest
from datafusion import column, udf
@pytest.fixture
def df(ctx):
# create a RecordBatch and a new DataFrame from it
batch = pa.RecordBatch.from_arrays(
[pa.array([1, 2, 3]), pa.array([4, 4, None])],
names=["a", "b"],
)
return ctx.create_dataframe([[batch]], name="test_table")
def test_udf(df):
# is_null is a pa function over arrays
is_null = udf(
lambda x: x.is_null(),
[pa.int64()],
pa.bool_(),
volatility="immutable",
)
df = df.select(is_null(column("b")))
result = df.collect()[0].column(0)
assert result == pa.array([False, False, True])
def test_udf_decorator(df):
@udf([pa.int64()], pa.bool_(), "immutable")
def is_null(x: pa.Array) -> pa.Array:
return x.is_null()
df = df.select(is_null(column("b")))
result = df.collect()[0].column(0)
assert result == pa.array([False, False, True])
def test_register_udf(ctx, df) -> None:
is_null = udf(
lambda x: x.is_null(),
[pa.float64()],
pa.bool_(),
volatility="immutable",
name="is_null",
)
ctx.register_udf(is_null)
df_result = ctx.sql("select is_null(b) from test_table")
result = df_result.collect()[0].column(0)
assert result == pa.array([False, False, True])
class OverThresholdUDF:
def __init__(self, threshold: int = 0) -> None:
self.threshold = threshold
def __call__(self, values: pa.Array) -> pa.Array:
return pa.array(v.as_py() >= self.threshold for v in values)
def test_udf_with_parameters_function(df) -> None:
udf_no_param = udf(
OverThresholdUDF(),
pa.int64(),
pa.bool_(),
volatility="immutable",
)
df1 = df.select(udf_no_param(column("a")))
result = df1.collect()[0].column(0)
assert result == pa.array([True, True, True])
udf_with_param = udf(
OverThresholdUDF(2),
pa.int64(),
pa.bool_(),
volatility="immutable",
)
df2 = df.select(udf_with_param(column("a")))
result = df2.collect()[0].column(0)
assert result == pa.array([False, True, True])
def test_udf_with_parameters_decorator(df) -> None:
@udf([pa.int64()], pa.bool_(), "immutable")
def udf_no_param(values: pa.Array) -> pa.Array:
return OverThresholdUDF()(values)
df1 = df.select(udf_no_param(column("a")))
result = df1.collect()[0].column(0)
assert result == pa.array([True, True, True])
@udf([pa.int64()], pa.bool_(), "immutable")
def udf_with_param(values: pa.Array) -> pa.Array:
return OverThresholdUDF(2)(values)
df2 = df.select(udf_with_param(column("a")))
result = df2.collect()[0].column(0)
assert result == pa.array([False, True, True])