blob: 03485da4ba65f3d4fc2f05236c8e74e184c9c706 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import pyarrow as pa
import pytest
from datafusion import SessionContext, column, lit
from datafusion import functions as f
@pytest.fixture
def df():
ctx = SessionContext()
# create a RecordBatch and a new DataFrame from it
batch = pa.RecordBatch.from_arrays(
[
pa.array([1, 2, 3]),
pa.array([4, 4, 6]),
pa.array([9, 8, 5]),
pa.array([True, True, False]),
],
names=["a", "b", "c", "d"],
)
return ctx.create_dataframe([[batch]])
@pytest.fixture
def df_aggregate_100():
ctx = SessionContext()
ctx.register_csv("aggregate_test_data", "./testing/data/csv/aggregate_test_100.csv")
return ctx.table("aggregate_test_data")
@pytest.mark.parametrize("agg_expr, calc_expected", [
(f.avg(column("a")), lambda a, b, c, d: np.array(np.average(a))),
(f.corr(column("a"), column("b")), lambda a, b, c, d: np.array(np.corrcoef(a, b)[0][1])),
(f.count(column("a")), lambda a, b, c, d: pa.array([len(a)])),
# Sample (co)variance -> ddof=1
# Population (co)variance -> ddof=0
(f.covar(column("a"), column("b")), lambda a, b, c, d: np.array(np.cov(a, b, ddof=1)[0][1])),
(f.covar_pop(column("a"), column("c")), lambda a, b, c, d: np.array(np.cov(a, c, ddof=0)[0][1])),
(f.covar_samp(column("b"), column("c")), lambda a, b, c, d: np.array(np.cov(b, c, ddof=1)[0][1])),
# f.grouping(col_a), # No physical plan implemented yet
(f.max(column("a")), lambda a, b, c, d: np.array(np.max(a))),
(f.mean(column("b")), lambda a, b, c, d: np.array(np.mean(b))),
(f.median(column("b")), lambda a, b, c, d: np.array(np.median(b))),
(f.min(column("a")), lambda a, b, c, d: np.array(np.min(a))),
(f.sum(column("b")), lambda a, b, c, d: np.array(np.sum(b.to_pylist()))),
# Sample stdev -> ddof=1
# Population stdev -> ddof=0
(f.stddev(column("a")), lambda a, b, c, d: np.array(np.std(a, ddof=1))),
(f.stddev_pop(column("b")), lambda a, b, c, d: np.array(np.std(b, ddof=0))),
(f.stddev_samp(column("c")), lambda a, b, c, d: np.array(np.std(c, ddof=1))),
(f.var(column("a")), lambda a, b, c, d: np.array(np.var(a, ddof=1))),
(f.var_pop(column("b")), lambda a, b, c, d: np.array(np.var(b, ddof=0))),
(f.var_samp(column("c")), lambda a, b, c, d: np.array(np.var(c, ddof=1))),
])
def test_aggregation_stats(df, agg_expr, calc_expected):
agg_df = df.aggregate([], [agg_expr])
result = agg_df.collect()[0]
values_a, values_b, values_c, values_d = df.collect()[0]
expected = calc_expected(values_a, values_b, values_c, values_d)
np.testing.assert_array_almost_equal(result.column(0), expected)
@pytest.mark.parametrize("agg_expr, expected", [
(f.approx_distinct(column("b")), pa.array([2], type=pa.uint64())),
(f.approx_median(column("b")), pa.array([4])),
(f.approx_percentile_cont(column("b"), lit(0.5)), pa.array([4])),
(
f.approx_percentile_cont_with_weight(column("b"), lit(0.6), lit(0.5)),
pa.array([6], type=pa.float64())
),
(f.array_agg(column("b")), pa.array([[4, 4, 6]])),
])
def test_aggregation(df, agg_expr, expected):
agg_df = df.aggregate([], [agg_expr])
result = agg_df.collect()[0]
assert result.column(0) == expected
def test_aggregate_100(df_aggregate_100):
# https://github.com/apache/datafusion/blob/bddb6415a50746d2803dd908d19c3758952d74f9/datafusion/sqllogictest/test_files/aggregate.slt#L1490-L1498
result = df_aggregate_100.aggregate(
[
column("c1")
],
[
f.approx_percentile_cont(column("c3"), lit(0.95), lit(200)).alias("c3")
]
).sort(column("c1").sort(ascending=True)).collect()
assert len(result) == 1
result = result[0]
assert result.column("c1") == pa.array(["a", "b", "c", "d", "e"])
assert result.column("c3") == pa.array([73, 68, 122, 124, 115])
def test_bit_add_or_xor(df):
df = df.aggregate(
[],
[
f.bit_and(column("a")),
f.bit_or(column("b")),
f.bit_xor(column("c")),
],
)
result = df.collect()
result = result[0]
assert result.column(0) == pa.array([0])
assert result.column(1) == pa.array([6])
assert result.column(2) == pa.array([4])
def test_bool_and_or(df):
df = df.aggregate(
[],
[
f.bool_and(column("d")),
f.bool_or(column("d")),
],
)
result = df.collect()
result = result[0]
assert result.column(0) == pa.array([False])
assert result.column(1) == pa.array([True])