| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from __future__ import annotations |
| |
| import pyarrow as pa |
| from datafusion import SessionContext |
| from datafusion_ffi_example import MyCatalogProvider |
| |
| |
| def test_catalog_provider(): |
| ctx = SessionContext() |
| |
| my_catalog_name = "my_catalog" |
| expected_schema_name = "my_schema" |
| expected_table_name = "my_table" |
| expected_table_columns = ["units", "price"] |
| |
| catalog_provider = MyCatalogProvider() |
| ctx.register_catalog_provider(my_catalog_name, catalog_provider) |
| my_catalog = ctx.catalog(my_catalog_name) |
| |
| my_catalog_schemas = my_catalog.names() |
| assert expected_schema_name in my_catalog_schemas |
| my_schema = my_catalog.schema(expected_schema_name) |
| assert expected_table_name in my_schema.names() |
| my_table = my_schema.table(expected_table_name) |
| assert expected_table_columns == my_table.schema.names |
| |
| result = ctx.table( |
| f"{my_catalog_name}.{expected_schema_name}.{expected_table_name}" |
| ).collect() |
| assert len(result) == 2 |
| |
| col0_result = [r.column(0) for r in result] |
| col1_result = [r.column(1) for r in result] |
| expected_col0 = [ |
| pa.array([10, 20, 30], type=pa.int32()), |
| pa.array([5, 7], type=pa.int32()), |
| ] |
| expected_col1 = [ |
| pa.array([1, 2, 5], type=pa.float64()), |
| pa.array([1.5, 2.5], type=pa.float64()), |
| ] |
| assert col0_result == expected_col0 |
| assert col1_result == expected_col1 |