blob: 14f68c9cd6fb8de521bc5b203d9bf519212c6cb1 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use arrow_array::RecordBatch;
use arrow_schema::{DataType, Schema};
use datafusion::physical_plan::ColumnarValue;
use datafusion_common::{internal_err, Result};
use datafusion_physical_expr::PhysicalExpr;
use std::{hash::Hash, sync::Arc};
/// This is similar to `UnKnownColumn` in DataFusion, but it has data type.
/// This is only used when the column is not bound to a schema, for example, the
/// inputs to aggregation functions in final aggregation. In the case, we cannot
/// bind the aggregation functions to the input schema which is grouping columns
/// and aggregate buffer attributes in Spark (DataFusion has different design).
/// But when creating certain aggregation functions, we need to know its input
/// data types. As `UnKnownColumn` doesn't have data type, we implement this
/// `UnboundColumn` to carry the data type.
#[derive(Debug, Hash, PartialEq, Eq, Clone)]
pub struct UnboundColumn {
name: String,
datatype: DataType,
}
impl UnboundColumn {
/// Create a new unbound column expression
pub fn new(name: &str, datatype: DataType) -> Self {
Self {
name: name.to_owned(),
datatype,
}
}
/// Get the column name
pub fn name(&self) -> &str {
&self.name
}
}
impl std::fmt::Display for UnboundColumn {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{}, datatype: {}", self.name, self.datatype)
}
}
impl PhysicalExpr for UnboundColumn {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn std::any::Any {
self
}
/// Get the data type of this expression, given the schema of the input
fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
Ok(self.datatype.clone())
}
/// Decide whether this expression is nullable, given the schema of the input
fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
Ok(true)
}
/// Evaluate the expression
fn evaluate(&self, _batch: &RecordBatch) -> Result<ColumnarValue> {
internal_err!("UnboundColumn::evaluate() should not be called")
}
fn children(&self) -> Vec<&Arc<dyn PhysicalExpr>> {
vec![]
}
fn with_new_children(
self: Arc<Self>,
_children: Vec<Arc<dyn PhysicalExpr>>,
) -> Result<Arc<dyn PhysicalExpr>> {
Ok(self)
}
}