blob: 728a35a9d2e01809b2fd5cbcea3e0f64c40d1ac4 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use arrow_schema::ArrowError;
use datafusion_common::DataFusionError;
#[derive(thiserror::Error, Debug)]
pub enum SparkError {
// Note that this message format is based on Spark 3.4 and is more detailed than the message
// returned by Spark 3.3
#[error("[CAST_INVALID_INPUT] The value '{value}' of the type \"{from_type}\" cannot be cast to \"{to_type}\" \
because it is malformed. Correct the value as per the syntax, or change its target type. \
Use `try_cast` to tolerate malformed input and return NULL instead. If necessary \
set \"spark.sql.ansi.enabled\" to \"false\" to bypass this error.")]
CastInvalidValue {
value: String,
from_type: String,
to_type: String,
},
#[error("[NUMERIC_VALUE_OUT_OF_RANGE] {value} cannot be represented as Decimal({precision}, {scale}). If necessary set \"spark.sql.ansi.enabled\" to \"false\" to bypass this error, and return NULL instead.")]
NumericValueOutOfRange {
value: String,
precision: u8,
scale: i8,
},
#[error("[CAST_OVERFLOW] The value {value} of the type \"{from_type}\" cannot be cast to \"{to_type}\" \
due to an overflow. Use `try_cast` to tolerate overflow and return NULL instead. If necessary \
set \"spark.sql.ansi.enabled\" to \"false\" to bypass this error.")]
CastOverFlow {
value: String,
from_type: String,
to_type: String,
},
#[error("[ARITHMETIC_OVERFLOW] {from_type} overflow. If necessary set \"spark.sql.ansi.enabled\" to \"false\" to bypass this error.")]
ArithmeticOverflow { from_type: String },
#[error("ArrowError: {0}.")]
Arrow(ArrowError),
#[error("InternalError: {0}.")]
Internal(String),
}
pub type SparkResult<T> = Result<T, SparkError>;
impl From<ArrowError> for SparkError {
fn from(value: ArrowError) -> Self {
SparkError::Arrow(value)
}
}
impl From<SparkError> for DataFusionError {
fn from(value: SparkError) -> Self {
DataFusionError::External(Box::new(value))
}
}