blob: 39dffa1c8e086281ea07dabe9349963beb0c6e9b [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use std::{any::Any, sync::Arc};
use crate::agg_funcs::variance::VarianceAccumulator;
use arrow::{
array::ArrayRef,
datatypes::{DataType, Field},
};
use datafusion::logical_expr::Accumulator;
use datafusion_common::types::NativeType;
use datafusion_common::{internal_err, Result, ScalarValue};
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
use datafusion_expr::{AggregateUDFImpl, Signature, Volatility};
use datafusion_physical_expr::expressions::format_state_name;
use datafusion_physical_expr::expressions::StatsType;
/// STDDEV and STDDEV_SAMP (standard deviation) aggregate expression
/// The implementation mostly is the same as the DataFusion's implementation. The reason
/// we have our own implementation is that DataFusion has UInt64 for state_field `count`,
/// while Spark has Double for count. Also we have added `null_on_divide_by_zero`
/// to be consistent with Spark's implementation.
#[derive(Debug)]
pub struct Stddev {
name: String,
signature: Signature,
stats_type: StatsType,
null_on_divide_by_zero: bool,
}
impl Stddev {
/// Create a new STDDEV aggregate function
pub fn new(
name: impl Into<String>,
data_type: DataType,
stats_type: StatsType,
null_on_divide_by_zero: bool,
) -> Self {
// the result of stddev just support FLOAT64.
assert!(matches!(data_type, DataType::Float64));
Self {
name: name.into(),
signature: Signature::coercible(
vec![
datafusion_expr_common::signature::TypeSignatureClass::Native(Arc::new(
NativeType::Float64,
)),
],
Volatility::Immutable,
),
stats_type,
null_on_divide_by_zero,
}
}
}
impl AggregateUDFImpl for Stddev {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
&self.name
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Float64)
}
fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(StddevAccumulator::try_new(
self.stats_type,
self.null_on_divide_by_zero,
)?))
}
fn create_sliding_accumulator(
&self,
_acc_args: AccumulatorArgs,
) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(StddevAccumulator::try_new(
self.stats_type,
self.null_on_divide_by_zero,
)?))
}
fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean"),
DataType::Float64,
true,
),
Field::new(format_state_name(&self.name, "m2"), DataType::Float64, true),
])
}
fn default_value(&self, _data_type: &DataType) -> Result<ScalarValue> {
Ok(ScalarValue::Float64(None))
}
}
/// An accumulator to compute the standard deviation
#[derive(Debug)]
pub struct StddevAccumulator {
variance: VarianceAccumulator,
}
impl StddevAccumulator {
/// Creates a new `StddevAccumulator`
pub fn try_new(s_type: StatsType, null_on_divide_by_zero: bool) -> Result<Self> {
Ok(Self {
variance: VarianceAccumulator::try_new(s_type, null_on_divide_by_zero)?,
})
}
pub fn get_m2(&self) -> f64 {
self.variance.get_m2()
}
}
impl Accumulator for StddevAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.variance.get_count()),
ScalarValue::from(self.variance.get_mean()),
ScalarValue::from(self.variance.get_m2()),
])
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
self.variance.update_batch(values)
}
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
self.variance.retract_batch(values)
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
self.variance.merge_batch(states)
}
fn evaluate(&mut self) -> Result<ScalarValue> {
let variance = self.variance.evaluate()?;
match variance {
ScalarValue::Float64(Some(e)) => Ok(ScalarValue::Float64(Some(e.sqrt()))),
ScalarValue::Float64(None) => Ok(ScalarValue::Float64(None)),
_ => internal_err!("Variance should be f64"),
}
}
fn size(&self) -> usize {
std::mem::align_of_val(self) - std::mem::align_of_val(&self.variance) + self.variance.size()
}
}