blob: fa3563cdea55c5f21d592afb8f6989aebc3f75a7 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
use std::any::Any;
use arrow::{
array::{ArrayRef, Float64Array},
compute::cast,
datatypes::{DataType, Field},
};
use datafusion::logical_expr::Accumulator;
use datafusion_common::{
downcast_value, unwrap_or_internal_err, DataFusionError, Result, ScalarValue,
};
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
use datafusion_expr::type_coercion::aggregates::NUMERICS;
use datafusion_expr::{AggregateUDFImpl, Signature, Volatility};
use datafusion_physical_expr::expressions::format_state_name;
use datafusion_physical_expr::expressions::StatsType;
/// COVAR_SAMP and COVAR_POP aggregate expression
/// The implementation mostly is the same as the DataFusion's implementation. The reason
/// we have our own implementation is that DataFusion has UInt64 for state_field count,
/// while Spark has Double for count.
#[derive(Debug, Clone)]
pub struct Covariance {
name: String,
signature: Signature,
stats_type: StatsType,
null_on_divide_by_zero: bool,
}
impl Covariance {
/// Create a new COVAR aggregate function
pub fn new(
name: impl Into<String>,
data_type: DataType,
stats_type: StatsType,
null_on_divide_by_zero: bool,
) -> Self {
// the result of covariance just support FLOAT64 data type.
assert!(matches!(data_type, DataType::Float64));
Self {
name: name.into(),
signature: Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable),
stats_type,
null_on_divide_by_zero,
}
}
}
impl AggregateUDFImpl for Covariance {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
fn name(&self) -> &str {
&self.name
}
fn signature(&self) -> &Signature {
&self.signature
}
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> {
Ok(DataType::Float64)
}
fn default_value(&self, _data_type: &DataType) -> Result<ScalarValue> {
Ok(ScalarValue::Float64(None))
}
fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(CovarianceAccumulator::try_new(
self.stats_type,
self.null_on_divide_by_zero,
)?))
}
fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean1"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean2"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "algo_const"),
DataType::Float64,
true,
),
])
}
}
/// An accumulator to compute covariance
#[derive(Debug)]
pub struct CovarianceAccumulator {
algo_const: f64,
mean1: f64,
mean2: f64,
count: f64,
stats_type: StatsType,
null_on_divide_by_zero: bool,
}
impl CovarianceAccumulator {
/// Creates a new `CovarianceAccumulator`
pub fn try_new(s_type: StatsType, null_on_divide_by_zero: bool) -> Result<Self> {
Ok(Self {
algo_const: 0_f64,
mean1: 0_f64,
mean2: 0_f64,
count: 0_f64,
stats_type: s_type,
null_on_divide_by_zero,
})
}
pub fn get_count(&self) -> f64 {
self.count
}
pub fn get_mean1(&self) -> f64 {
self.mean1
}
pub fn get_mean2(&self) -> f64 {
self.mean2
}
pub fn get_algo_const(&self) -> f64 {
self.algo_const
}
}
impl Accumulator for CovarianceAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.count),
ScalarValue::from(self.mean1),
ScalarValue::from(self.mean2),
ScalarValue::from(self.algo_const),
])
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();
for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};
if value1.is_none() || value2.is_none() {
continue;
}
let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);
let new_count = self.count + 1.0;
let delta1 = value1 - self.mean1;
let new_mean1 = delta1 / new_count + self.mean1;
let delta2 = value2 - self.mean2;
let new_mean2 = delta2 / new_count + self.mean2;
let new_c = delta1 * (value2 - new_mean2) + self.algo_const;
self.count += 1.0;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}
Ok(())
}
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();
for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};
if value1.is_none() || value2.is_none() {
continue;
}
let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);
let new_count = self.count - 1.0;
let delta1 = self.mean1 - value1;
let new_mean1 = delta1 / new_count + self.mean1;
let delta2 = self.mean2 - value2;
let new_mean2 = delta2 / new_count + self.mean2;
let new_c = self.algo_const - delta1 * (new_mean2 - value2);
self.count -= 1.0;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let counts = downcast_value!(states[0], Float64Array);
let means1 = downcast_value!(states[1], Float64Array);
let means2 = downcast_value!(states[2], Float64Array);
let cs = downcast_value!(states[3], Float64Array);
for i in 0..counts.len() {
let c = counts.value(i);
if c == 0.0 {
continue;
}
let new_count = self.count + c;
let new_mean1 = self.mean1 * self.count / new_count + means1.value(i) * c / new_count;
let new_mean2 = self.mean2 * self.count / new_count + means2.value(i) * c / new_count;
let delta1 = self.mean1 - means1.value(i);
let delta2 = self.mean2 - means2.value(i);
let new_c =
self.algo_const + cs.value(i) + delta1 * delta2 * self.count * c / new_count;
self.count = new_count;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}
Ok(())
}
fn evaluate(&mut self) -> Result<ScalarValue> {
if self.count == 0.0 {
return Ok(ScalarValue::Float64(None));
}
let count = match self.stats_type {
StatsType::Population => self.count,
StatsType::Sample if self.count > 1.0 => self.count - 1.0,
StatsType::Sample => {
// self.count == 1.0
return if self.null_on_divide_by_zero {
Ok(ScalarValue::Float64(None))
} else {
Ok(ScalarValue::Float64(Some(f64::NAN)))
};
}
};
Ok(ScalarValue::Float64(Some(self.algo_const / count)))
}
fn size(&self) -> usize {
std::mem::size_of_val(self)
}
}