blob: 482639df0f49a8b93b7c41e260e16bde698361f2 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::utils::wait_for_future;
use crate::{errors::DataFusionError, expression::PyExpr};
use datafusion::arrow::datatypes::Schema;
use datafusion::arrow::pyarrow::{PyArrowConvert, PyArrowException, PyArrowType};
use datafusion::arrow::util::pretty;
use datafusion::dataframe::DataFrame;
use datafusion::logical_expr::JoinType;
use pyo3::exceptions::PyTypeError;
use pyo3::prelude::*;
use pyo3::types::PyTuple;
use std::sync::Arc;
/// A PyDataFrame is a representation of a logical plan and an API to compose statements.
/// Use it to build a plan and `.collect()` to execute the plan and collect the result.
/// The actual execution of a plan runs natively on Rust and Arrow on a multi-threaded environment.
#[pyclass(name = "DataFrame", module = "ballista", subclass)]
#[derive(Clone)]
pub(crate) struct PyDataFrame {
df: Arc<DataFrame>,
}
impl PyDataFrame {
/// creates a new PyDataFrame
pub fn new(df: DataFrame) -> Self {
Self { df: Arc::new(df) }
}
}
#[pymethods]
impl PyDataFrame {
fn __getitem__(&self, key: PyObject) -> PyResult<Self> {
Python::with_gil(|py| {
if let Ok(key) = key.extract::<&str>(py) {
self.select_columns(vec![key])
} else if let Ok(tuple) = key.extract::<&PyTuple>(py) {
let keys = tuple
.iter()
.map(|item| item.extract::<&str>())
.collect::<PyResult<Vec<&str>>>()?;
self.select_columns(keys)
} else if let Ok(keys) = key.extract::<Vec<&str>>(py) {
self.select_columns(keys)
} else {
let message = "DataFrame can only be indexed by string index or indices";
Err(PyTypeError::new_err(message))
}
})
}
/// Returns the schema from the logical plan
fn schema(&self) -> PyArrowType<Schema> {
PyArrowType(self.df.schema().into())
}
#[pyo3(signature = (*args))]
fn select_columns(&self, args: Vec<&str>) -> PyResult<Self> {
let df = self.df.as_ref().clone().select_columns(&args)?;
Ok(Self::new(df))
}
#[pyo3(signature = (*args))]
fn select(&self, args: Vec<PyExpr>) -> PyResult<Self> {
let expr = args.into_iter().map(|e| e.into()).collect();
let df = self.df.as_ref().clone().select(expr)?;
Ok(Self::new(df))
}
fn filter(&self, predicate: PyExpr) -> PyResult<Self> {
let df = self.df.as_ref().clone().filter(predicate.into())?;
Ok(Self::new(df))
}
fn with_column(&self, name: &str, expr: PyExpr) -> PyResult<Self> {
let df = self.df.as_ref().clone().with_column(name, expr.into())?;
Ok(Self::new(df))
}
fn aggregate(&self, group_by: Vec<PyExpr>, aggs: Vec<PyExpr>) -> PyResult<Self> {
let group_by = group_by.into_iter().map(|e| e.into()).collect();
let aggs = aggs.into_iter().map(|e| e.into()).collect();
let df = self.df.as_ref().clone().aggregate(group_by, aggs)?;
Ok(Self::new(df))
}
#[pyo3(signature = (*exprs))]
fn sort(&self, exprs: Vec<PyExpr>) -> PyResult<Self> {
let exprs = exprs.into_iter().map(|e| e.into()).collect();
let df = self.df.as_ref().clone().sort(exprs)?;
Ok(Self::new(df))
}
fn limit(&self, count: usize) -> PyResult<Self> {
let df = self.df.as_ref().clone().limit(0, Some(count))?;
Ok(Self::new(df))
}
/// Executes the plan, returning a list of `RecordBatch`es.
/// Unless some order is specified in the plan, there is no
/// guarantee of the order of the result.
fn collect(&self, py: Python) -> PyResult<Vec<PyObject>> {
let batches = wait_for_future(py, self.df.as_ref().clone().collect())?;
// cannot use PyResult<Vec<RecordBatch>> return type due to
// https://github.com/PyO3/pyo3/issues/1813
batches.into_iter().map(|rb| rb.to_pyarrow(py)).collect()
}
/// Print the result, 20 lines by default
#[pyo3(signature = (num = 20))]
fn show(&self, py: Python, num: usize) -> PyResult<()> {
let df = self.df.as_ref().clone().limit(0, Some(num))?;
let batches = wait_for_future(py, df.collect())?;
pretty::print_batches(&batches).map_err(|err| PyArrowException::new_err(err.to_string()))
}
fn join(
&self,
right: PyDataFrame,
join_keys: (Vec<&str>, Vec<&str>),
how: &str,
) -> PyResult<Self> {
let join_type = match how {
"inner" => JoinType::Inner,
"left" => JoinType::Left,
"right" => JoinType::Right,
"full" => JoinType::Full,
"semi" => JoinType::LeftSemi,
"anti" => JoinType::LeftAnti,
"right_semi" => JoinType::RightSemi,
how => {
return Err(DataFusionError::Common(format!(
"The join type {} does not exist or is not implemented",
how
))
.into())
}
};
let df = self.df.as_ref().clone().join(
right.df.as_ref().clone(),
join_type,
&join_keys.0,
&join_keys.1,
None,
)?;
Ok(Self::new(df))
}
/// Print the explain output to stdout
#[pyo3(signature = (verbose = false, analyze = false))]
fn explain(&self, py: Python, verbose: bool, analyze: bool) -> PyResult<()> {
let df = self.df.as_ref().clone().explain(verbose, analyze)?;
let batches = wait_for_future(py, df.collect())?;
pretty::print_batches(&batches).map_err(|err| PyArrowException::new_err(err.to_string()))
}
/// Get the explain output as a string
#[pyo3(signature = (verbose = false, analyze = false))]
fn explain_string(&self, py: Python, verbose: bool, analyze: bool) -> PyResult<String> {
let df = self.df.as_ref().clone().explain(verbose, analyze)?;
let batches = wait_for_future(py, df.collect())?;
let display = pretty::pretty_format_batches(&batches)
.map_err(|err| PyArrowException::new_err(err.to_string()))?;
Ok(format!("{}", display))
}
}