blob: a6ec4dec8653562e1a849318b879423a740f4f70 [file] [log] [blame]
% Licensed under the Apache License, Version 2.0 (the "License"); you may not
% use this file except in compliance with the License. You may obtain a copy of
% the License at
%
% http://www.apache.org/licenses/LICENSE-2.0
%
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
% WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
% License for the specific language governing permissions and limitations under
% the License.
-module(couch_btree).
-export([open/2, open/3, query_modify/4, add/2, add_remove/3]).
-export([fold/4, full_reduce/1, final_reduce/2, foldl/3, foldl/4]).
-export([fold_reduce/4, lookup/2, get_state/1, set_options/2]).
-define(CHUNK_THRESHOLD, 16#4ff).
-record(btree,
{fd,
root,
extract_kv = fun({Key, Value}) -> {Key, Value} end,
assemble_kv = fun(Key, Value) -> {Key, Value} end,
less = fun(A, B) -> A < B end,
reduce = nil
}).
extract(#btree{extract_kv=Extract}, Value) ->
Extract(Value).
assemble(#btree{assemble_kv=Assemble}, Key, Value) ->
Assemble(Key, Value).
less(#btree{less=Less}, A, B) ->
Less(A, B).
% pass in 'nil' for State if a new Btree.
open(State, Fd) ->
{ok, #btree{root=State, fd=Fd}}.
set_options(Bt, []) ->
Bt;
set_options(Bt, [{split, Extract}|Rest]) ->
set_options(Bt#btree{extract_kv=Extract}, Rest);
set_options(Bt, [{join, Assemble}|Rest]) ->
set_options(Bt#btree{assemble_kv=Assemble}, Rest);
set_options(Bt, [{less, Less}|Rest]) ->
set_options(Bt#btree{less=Less}, Rest);
set_options(Bt, [{reduce, Reduce}|Rest]) ->
set_options(Bt#btree{reduce=Reduce}, Rest).
open(State, Fd, Options) ->
{ok, set_options(#btree{root=State, fd=Fd}, Options)}.
get_state(#btree{root=Root}) ->
Root.
final_reduce(#btree{reduce=Reduce}, Val) ->
final_reduce(Reduce, Val);
final_reduce(Reduce, {[], []}) ->
Reduce(reduce, []);
final_reduce(_Bt, {[], [Red]}) ->
Red;
final_reduce(Reduce, {[], Reductions}) ->
Reduce(rereduce, Reductions);
final_reduce(Reduce, {KVs, Reductions}) ->
Red = Reduce(reduce, KVs),
final_reduce(Reduce, {[], [Red | Reductions]}).
fold_reduce(#btree{root=Root}=Bt, Fun, Acc, Options) ->
Dir = couch_util:get_value(dir, Options, fwd),
StartKey = couch_util:get_value(start_key, Options),
EndKey = case couch_util:get_value(end_key_gt, Options) of
undefined -> couch_util:get_value(end_key, Options);
LastKey -> LastKey
end,
KeyGroupFun = couch_util:get_value(key_group_fun, Options, fun(_,_) -> true end),
{StartKey2, EndKey2} =
case Dir of
rev -> {EndKey, StartKey};
fwd -> {StartKey, EndKey}
end,
try
{ok, Acc2, GroupedRedsAcc2, GroupedKVsAcc2, GroupedKey2} =
reduce_stream_node(Bt, Dir, Root, StartKey2, EndKey2, undefined, [], [],
KeyGroupFun, Fun, Acc),
if GroupedKey2 == undefined ->
{ok, Acc2};
true ->
case Fun(GroupedKey2, {GroupedKVsAcc2, GroupedRedsAcc2}, Acc2) of
{ok, Acc3} -> {ok, Acc3};
{stop, Acc3} -> {ok, Acc3}
end
end
catch
throw:{stop, AccDone} -> {ok, AccDone}
end.
full_reduce(#btree{root=nil,reduce=Reduce}) ->
{ok, Reduce(reduce, [])};
full_reduce(#btree{root={_P, Red}}) ->
{ok, Red}.
% wraps a 2 arity function with the proper 3 arity function
convert_fun_arity(Fun) when is_function(Fun, 2) ->
fun(KV, _Reds, AccIn) -> Fun(KV, AccIn) end;
convert_fun_arity(Fun) when is_function(Fun, 3) ->
Fun. % Already arity 3
make_key_in_end_range_function(#btree{less=Less}, fwd, Options) ->
case couch_util:get_value(end_key_gt, Options) of
undefined ->
case couch_util:get_value(end_key, Options) of
undefined ->
fun(_Key) -> true end;
LastKey ->
fun(Key) -> not Less(LastKey, Key) end
end;
EndKey ->
fun(Key) -> Less(Key, EndKey) end
end;
make_key_in_end_range_function(#btree{less=Less}, rev, Options) ->
case couch_util:get_value(end_key_gt, Options) of
undefined ->
case couch_util:get_value(end_key, Options) of
undefined ->
fun(_Key) -> true end;
LastKey ->
fun(Key) -> not Less(Key, LastKey) end
end;
EndKey ->
fun(Key) -> Less(EndKey, Key) end
end.
foldl(Bt, Fun, Acc) ->
fold(Bt, Fun, Acc, []).
foldl(Bt, Fun, Acc, Options) ->
fold(Bt, Fun, Acc, Options).
fold(#btree{root=nil}, _Fun, Acc, _Options) ->
{ok, {[], []}, Acc};
fold(#btree{root=Root}=Bt, Fun, Acc, Options) ->
Dir = couch_util:get_value(dir, Options, fwd),
InRange = make_key_in_end_range_function(Bt, Dir, Options),
Result =
case couch_util:get_value(start_key, Options) of
undefined ->
stream_node(Bt, [], Bt#btree.root, InRange, Dir,
convert_fun_arity(Fun), Acc);
StartKey ->
stream_node(Bt, [], Bt#btree.root, StartKey, InRange, Dir,
convert_fun_arity(Fun), Acc)
end,
case Result of
{ok, Acc2}->
{_P, FullReduction} = Root,
{ok, {[], [FullReduction]}, Acc2};
{stop, LastReduction, Acc2} ->
{ok, LastReduction, Acc2}
end.
add(Bt, InsertKeyValues) ->
add_remove(Bt, InsertKeyValues, []).
add_remove(Bt, InsertKeyValues, RemoveKeys) ->
{ok, [], Bt2} = query_modify(Bt, [], InsertKeyValues, RemoveKeys),
{ok, Bt2}.
query_modify(Bt, LookupKeys, InsertValues, RemoveKeys) ->
#btree{root=Root} = Bt,
InsertActions = lists:map(
fun(KeyValue) ->
{Key, Value} = extract(Bt, KeyValue),
{insert, Key, Value}
end, InsertValues),
RemoveActions = [{remove, Key, nil} || Key <- RemoveKeys],
FetchActions = [{fetch, Key, nil} || Key <- LookupKeys],
SortFun =
fun({OpA, A, _}, {OpB, B, _}) ->
case A == B of
% A and B are equal, sort by op.
true -> op_order(OpA) < op_order(OpB);
false ->
less(Bt, A, B)
end
end,
Actions = lists:sort(SortFun, lists:append([InsertActions, RemoveActions, FetchActions])),
{ok, KeyPointers, QueryResults, Bt2} = modify_node(Bt, Root, Actions, []),
{ok, NewRoot, Bt3} = complete_root(Bt2, KeyPointers),
{ok, QueryResults, Bt3#btree{root=NewRoot}}.
% for ordering different operatations with the same key.
% fetch < remove < insert
op_order(fetch) -> 1;
op_order(remove) -> 2;
op_order(insert) -> 3.
lookup(#btree{root=Root, less=Less}=Bt, Keys) ->
SortedKeys = lists:sort(Less, Keys),
{ok, SortedResults} = lookup(Bt, Root, SortedKeys),
% We want to return the results in the same order as the keys were input
% but we may have changed the order when we sorted. So we need to put the
% order back into the results.
couch_util:reorder_results(Keys, SortedResults).
lookup(_Bt, nil, Keys) ->
{ok, [{Key, not_found} || Key <- Keys]};
lookup(Bt, {Pointer, _Reds}, Keys) ->
{NodeType, NodeList} = get_node(Bt, Pointer),
case NodeType of
kp_node ->
lookup_kpnode(Bt, list_to_tuple(NodeList), 1, Keys, []);
kv_node ->
lookup_kvnode(Bt, list_to_tuple(NodeList), 1, Keys, [])
end.
lookup_kpnode(_Bt, _NodeTuple, _LowerBound, [], Output) ->
{ok, lists:reverse(Output)};
lookup_kpnode(_Bt, NodeTuple, LowerBound, Keys, Output) when tuple_size(NodeTuple) < LowerBound ->
{ok, lists:reverse(Output, [{Key, not_found} || Key <- Keys])};
lookup_kpnode(Bt, NodeTuple, LowerBound, [FirstLookupKey | _] = LookupKeys, Output) ->
N = find_first_gteq(Bt, NodeTuple, LowerBound, tuple_size(NodeTuple), FirstLookupKey),
{Key, PointerInfo} = element(N, NodeTuple),
SplitFun = fun(LookupKey) -> not less(Bt, Key, LookupKey) end,
case lists:splitwith(SplitFun, LookupKeys) of
{[], GreaterQueries} ->
lookup_kpnode(Bt, NodeTuple, N + 1, GreaterQueries, Output);
{LessEqQueries, GreaterQueries} ->
{ok, Results} = lookup(Bt, PointerInfo, LessEqQueries),
lookup_kpnode(Bt, NodeTuple, N + 1, GreaterQueries, lists:reverse(Results, Output))
end.
lookup_kvnode(_Bt, _NodeTuple, _LowerBound, [], Output) ->
{ok, lists:reverse(Output)};
lookup_kvnode(_Bt, NodeTuple, LowerBound, Keys, Output) when tuple_size(NodeTuple) < LowerBound ->
% keys not found
{ok, lists:reverse(Output, [{Key, not_found} || Key <- Keys])};
lookup_kvnode(Bt, NodeTuple, LowerBound, [LookupKey | RestLookupKeys], Output) ->
N = find_first_gteq(Bt, NodeTuple, LowerBound, tuple_size(NodeTuple), LookupKey),
{Key, Value} = element(N, NodeTuple),
case less(Bt, LookupKey, Key) of
true ->
% LookupKey is less than Key
lookup_kvnode(Bt, NodeTuple, N, RestLookupKeys, [{LookupKey, not_found} | Output]);
false ->
case less(Bt, Key, LookupKey) of
true ->
% LookupKey is greater than Key
lookup_kvnode(Bt, NodeTuple, N+1, RestLookupKeys, [{LookupKey, not_found} | Output]);
false ->
% LookupKey is equal to Key
lookup_kvnode(Bt, NodeTuple, N, RestLookupKeys, [{LookupKey, {ok, assemble(Bt, LookupKey, Value)}} | Output])
end
end.
complete_root(Bt, []) ->
{ok, nil, Bt};
complete_root(Bt, [{_Key, PointerInfo}])->
{ok, PointerInfo, Bt};
complete_root(Bt, KPs) ->
{ok, ResultKeyPointers, Bt2} = write_node(Bt, kp_node, KPs),
complete_root(Bt2, ResultKeyPointers).
%%%%%%%%%%%%% The chunkify function sucks! %%%%%%%%%%%%%
% It is inaccurate as it does not account for compression when blocks are
% written. Plus with the "case byte_size(term_to_binary(InList)) of" code
% it's probably really inefficient.
chunkify(InList) ->
case byte_size(term_to_binary(InList)) of
Size when Size > ?CHUNK_THRESHOLD ->
NumberOfChunksLikely = ((Size div ?CHUNK_THRESHOLD) + 1),
ChunkThreshold = Size div NumberOfChunksLikely,
chunkify(InList, ChunkThreshold, [], 0, []);
_Else ->
[InList]
end.
chunkify([], _ChunkThreshold, [], 0, OutputChunks) ->
lists:reverse(OutputChunks);
chunkify([], _ChunkThreshold, OutList, _OutListSize, OutputChunks) ->
lists:reverse([lists:reverse(OutList) | OutputChunks]);
chunkify([InElement | RestInList], ChunkThreshold, OutList, OutListSize, OutputChunks) ->
case byte_size(term_to_binary(InElement)) of
Size when (Size + OutListSize) > ChunkThreshold andalso OutList /= [] ->
chunkify(RestInList, ChunkThreshold, [], 0, [lists:reverse([InElement | OutList]) | OutputChunks]);
Size ->
chunkify(RestInList, ChunkThreshold, [InElement | OutList], OutListSize + Size, OutputChunks)
end.
modify_node(Bt, RootPointerInfo, Actions, QueryOutput) ->
case RootPointerInfo of
nil ->
NodeType = kv_node,
NodeList = [];
{Pointer, _Reds} ->
{NodeType, NodeList} = get_node(Bt, Pointer)
end,
NodeTuple = list_to_tuple(NodeList),
{ok, NewNodeList, QueryOutput2, Bt2} =
case NodeType of
kp_node -> modify_kpnode(Bt, NodeTuple, 1, Actions, [], QueryOutput);
kv_node -> modify_kvnode(Bt, NodeTuple, 1, Actions, [], QueryOutput)
end,
case NewNodeList of
[] -> % no nodes remain
{ok, [], QueryOutput2, Bt2};
NodeList -> % nothing changed
{LastKey, _LastValue} = element(tuple_size(NodeTuple), NodeTuple),
{ok, [{LastKey, RootPointerInfo}], QueryOutput2, Bt2};
_Else2 ->
{ok, ResultList, Bt3} = write_node(Bt2, NodeType, NewNodeList),
{ok, ResultList, QueryOutput2, Bt3}
end.
reduce_node(#btree{reduce=nil}, _NodeType, _NodeList) ->
[];
reduce_node(#btree{reduce=R}, kp_node, NodeList) ->
R(rereduce, [Red || {_K, {_P, Red}} <- NodeList]);
reduce_node(#btree{reduce=R}=Bt, kv_node, NodeList) ->
R(reduce, [assemble(Bt, K, V) || {K, V} <- NodeList]).
get_node(#btree{fd = Fd}, NodePos) ->
{ok, {NodeType, NodeList}} = couch_file:pread_term(Fd, NodePos),
{NodeType, NodeList}.
write_node(Bt, NodeType, NodeList) ->
% split up nodes into smaller sizes
NodeListList = chunkify(NodeList),
% now write out each chunk and return the KeyPointer pairs for those nodes
ResultList = [
begin
{ok, Pointer} = couch_file:append_term(Bt#btree.fd, {NodeType, ANodeList}),
{LastKey, _} = lists:last(ANodeList),
{LastKey, {Pointer, reduce_node(Bt, NodeType, ANodeList)}}
end
||
ANodeList <- NodeListList
],
{ok, ResultList, Bt}.
modify_kpnode(Bt, {}, _LowerBound, Actions, [], QueryOutput) ->
modify_node(Bt, nil, Actions, QueryOutput);
modify_kpnode(Bt, NodeTuple, LowerBound, [], ResultNode, QueryOutput) ->
{ok, lists:reverse(ResultNode, bounded_tuple_to_list(NodeTuple, LowerBound,
tuple_size(NodeTuple), [])), QueryOutput, Bt};
modify_kpnode(Bt, NodeTuple, LowerBound,
[{_, FirstActionKey, _}|_]=Actions, ResultNode, QueryOutput) ->
Sz = tuple_size(NodeTuple),
N = find_first_gteq(Bt, NodeTuple, LowerBound, Sz, FirstActionKey),
case N =:= Sz of
true ->
% perform remaining actions on last node
{_, PointerInfo} = element(Sz, NodeTuple),
{ok, ChildKPs, QueryOutput2, Bt2} =
modify_node(Bt, PointerInfo, Actions, QueryOutput),
NodeList = lists:reverse(ResultNode, bounded_tuple_to_list(NodeTuple, LowerBound,
Sz - 1, ChildKPs)),
{ok, NodeList, QueryOutput2, Bt2};
false ->
{NodeKey, PointerInfo} = element(N, NodeTuple),
SplitFun = fun({_ActionType, ActionKey, _ActionValue}) ->
not less(Bt, NodeKey, ActionKey)
end,
{LessEqQueries, GreaterQueries} = lists:splitwith(SplitFun, Actions),
{ok, ChildKPs, QueryOutput2, Bt2} =
modify_node(Bt, PointerInfo, LessEqQueries, QueryOutput),
ResultNode2 = lists:reverse(ChildKPs, bounded_tuple_to_revlist(NodeTuple,
LowerBound, N - 1, ResultNode)),
modify_kpnode(Bt2, NodeTuple, N+1, GreaterQueries, ResultNode2, QueryOutput2)
end.
bounded_tuple_to_revlist(_Tuple, Start, End, Tail) when Start > End ->
Tail;
bounded_tuple_to_revlist(Tuple, Start, End, Tail) ->
bounded_tuple_to_revlist(Tuple, Start+1, End, [element(Start, Tuple)|Tail]).
bounded_tuple_to_list(Tuple, Start, End, Tail) ->
bounded_tuple_to_list2(Tuple, Start, End, [], Tail).
bounded_tuple_to_list2(_Tuple, Start, End, Acc, Tail) when Start > End ->
lists:reverse(Acc, Tail);
bounded_tuple_to_list2(Tuple, Start, End, Acc, Tail) ->
bounded_tuple_to_list2(Tuple, Start + 1, End, [element(Start, Tuple) | Acc], Tail).
find_first_gteq(_Bt, _Tuple, Start, End, _Key) when Start == End ->
End;
find_first_gteq(Bt, Tuple, Start, End, Key) ->
Mid = Start + ((End - Start) div 2),
{TupleKey, _} = element(Mid, Tuple),
case less(Bt, TupleKey, Key) of
true ->
find_first_gteq(Bt, Tuple, Mid+1, End, Key);
false ->
find_first_gteq(Bt, Tuple, Start, Mid, Key)
end.
modify_kvnode(Bt, NodeTuple, LowerBound, [], ResultNode, QueryOutput) ->
{ok, lists:reverse(ResultNode, bounded_tuple_to_list(NodeTuple, LowerBound, tuple_size(NodeTuple), [])), QueryOutput, Bt};
modify_kvnode(Bt, NodeTuple, LowerBound, [{ActionType, ActionKey, ActionValue} | RestActions], ResultNode, QueryOutput) when LowerBound > tuple_size(NodeTuple) ->
case ActionType of
insert ->
modify_kvnode(Bt, NodeTuple, LowerBound, RestActions, [{ActionKey, ActionValue} | ResultNode], QueryOutput);
remove ->
% just drop the action
modify_kvnode(Bt, NodeTuple, LowerBound, RestActions, ResultNode, QueryOutput);
fetch ->
% the key/value must not exist in the tree
modify_kvnode(Bt, NodeTuple, LowerBound, RestActions, ResultNode, [{not_found, {ActionKey, nil}} | QueryOutput])
end;
modify_kvnode(Bt, NodeTuple, LowerBound, [{ActionType, ActionKey, ActionValue} | RestActions], AccNode, QueryOutput) ->
N = find_first_gteq(Bt, NodeTuple, LowerBound, tuple_size(NodeTuple), ActionKey),
{Key, Value} = element(N, NodeTuple),
ResultNode = bounded_tuple_to_revlist(NodeTuple, LowerBound, N - 1, AccNode),
case less(Bt, ActionKey, Key) of
true ->
case ActionType of
insert ->
% ActionKey is less than the Key, so insert
modify_kvnode(Bt, NodeTuple, N, RestActions, [{ActionKey, ActionValue} | ResultNode], QueryOutput);
remove ->
% ActionKey is less than the Key, just drop the action
modify_kvnode(Bt, NodeTuple, N, RestActions, ResultNode, QueryOutput);
fetch ->
% ActionKey is less than the Key, the key/value must not exist in the tree
modify_kvnode(Bt, NodeTuple, N, RestActions, ResultNode, [{not_found, {ActionKey, nil}} | QueryOutput])
end;
false ->
% ActionKey and Key are maybe equal.
case less(Bt, Key, ActionKey) of
false ->
case ActionType of
insert ->
modify_kvnode(Bt, NodeTuple, N+1, RestActions, [{ActionKey, ActionValue} | ResultNode], QueryOutput);
remove ->
modify_kvnode(Bt, NodeTuple, N+1, RestActions, ResultNode, QueryOutput);
fetch ->
% ActionKey is equal to the Key, insert into the QueryOuput, but re-process the node
% since an identical action key can follow it.
modify_kvnode(Bt, NodeTuple, N, RestActions, ResultNode, [{ok, assemble(Bt, Key, Value)} | QueryOutput])
end;
true ->
modify_kvnode(Bt, NodeTuple, N + 1, [{ActionType, ActionKey, ActionValue} | RestActions], [{Key, Value} | ResultNode], QueryOutput)
end
end.
reduce_stream_node(_Bt, _Dir, nil, _KeyStart, _KeyEnd, GroupedKey, GroupedKVsAcc,
GroupedRedsAcc, _KeyGroupFun, _Fun, Acc) ->
{ok, Acc, GroupedRedsAcc, GroupedKVsAcc, GroupedKey};
reduce_stream_node(Bt, Dir, {P, _R}, KeyStart, KeyEnd, GroupedKey, GroupedKVsAcc,
GroupedRedsAcc, KeyGroupFun, Fun, Acc) ->
case get_node(Bt, P) of
{kp_node, NodeList} ->
reduce_stream_kp_node(Bt, Dir, NodeList, KeyStart, KeyEnd, GroupedKey,
GroupedKVsAcc, GroupedRedsAcc, KeyGroupFun, Fun, Acc);
{kv_node, KVs} ->
reduce_stream_kv_node(Bt, Dir, KVs, KeyStart, KeyEnd, GroupedKey,
GroupedKVsAcc, GroupedRedsAcc, KeyGroupFun, Fun, Acc)
end.
reduce_stream_kv_node(Bt, Dir, KVs, KeyStart, KeyEnd,
GroupedKey, GroupedKVsAcc, GroupedRedsAcc,
KeyGroupFun, Fun, Acc) ->
GTEKeyStartKVs =
case KeyStart of
undefined ->
KVs;
_ ->
lists:dropwhile(fun({Key,_}) -> less(Bt, Key, KeyStart) end, KVs)
end,
KVs2 =
case KeyEnd of
undefined ->
GTEKeyStartKVs;
_ ->
lists:takewhile(
fun({Key,_}) ->
not less(Bt, KeyEnd, Key)
end, GTEKeyStartKVs)
end,
reduce_stream_kv_node2(Bt, adjust_dir(Dir, KVs2), GroupedKey, GroupedKVsAcc, GroupedRedsAcc,
KeyGroupFun, Fun, Acc).
reduce_stream_kv_node2(_Bt, [], GroupedKey, GroupedKVsAcc, GroupedRedsAcc,
_KeyGroupFun, _Fun, Acc) ->
{ok, Acc, GroupedRedsAcc, GroupedKVsAcc, GroupedKey};
reduce_stream_kv_node2(Bt, [{Key, Value}| RestKVs], GroupedKey, GroupedKVsAcc,
GroupedRedsAcc, KeyGroupFun, Fun, Acc) ->
case GroupedKey of
undefined ->
reduce_stream_kv_node2(Bt, RestKVs, Key,
[assemble(Bt,Key,Value)], [], KeyGroupFun, Fun, Acc);
_ ->
case KeyGroupFun(GroupedKey, Key) of
true ->
reduce_stream_kv_node2(Bt, RestKVs, GroupedKey,
[assemble(Bt,Key,Value)|GroupedKVsAcc], GroupedRedsAcc, KeyGroupFun,
Fun, Acc);
false ->
case Fun(GroupedKey, {GroupedKVsAcc, GroupedRedsAcc}, Acc) of
{ok, Acc2} ->
reduce_stream_kv_node2(Bt, RestKVs, Key, [assemble(Bt,Key,Value)],
[], KeyGroupFun, Fun, Acc2);
{stop, Acc2} ->
throw({stop, Acc2})
end
end
end.
reduce_stream_kp_node(Bt, Dir, NodeList, KeyStart, KeyEnd,
GroupedKey, GroupedKVsAcc, GroupedRedsAcc,
KeyGroupFun, Fun, Acc) ->
Nodes =
case KeyStart of
undefined ->
NodeList;
_ ->
lists:dropwhile(
fun({Key,_}) ->
less(Bt, Key, KeyStart)
end, NodeList)
end,
NodesInRange =
case KeyEnd of
undefined ->
Nodes;
_ ->
{InRange, MaybeInRange} = lists:splitwith(
fun({Key,_}) ->
less(Bt, Key, KeyEnd)
end, Nodes),
InRange ++ case MaybeInRange of [] -> []; [FirstMaybe|_] -> [FirstMaybe] end
end,
reduce_stream_kp_node2(Bt, Dir, adjust_dir(Dir, NodesInRange), KeyStart, KeyEnd,
GroupedKey, GroupedKVsAcc, GroupedRedsAcc, KeyGroupFun, Fun, Acc).
reduce_stream_kp_node2(Bt, Dir, [{_Key, NodeInfo} | RestNodeList], KeyStart, KeyEnd,
undefined, [], [], KeyGroupFun, Fun, Acc) ->
{ok, Acc2, GroupedRedsAcc2, GroupedKVsAcc2, GroupedKey2} =
reduce_stream_node(Bt, Dir, NodeInfo, KeyStart, KeyEnd, undefined,
[], [], KeyGroupFun, Fun, Acc),
reduce_stream_kp_node2(Bt, Dir, RestNodeList, KeyStart, KeyEnd, GroupedKey2,
GroupedKVsAcc2, GroupedRedsAcc2, KeyGroupFun, Fun, Acc2);
reduce_stream_kp_node2(Bt, Dir, NodeList, KeyStart, KeyEnd,
GroupedKey, GroupedKVsAcc, GroupedRedsAcc, KeyGroupFun, Fun, Acc) ->
{Grouped0, Ungrouped0} = lists:splitwith(fun({Key,_}) ->
KeyGroupFun(GroupedKey, Key) end, NodeList),
{GroupedNodes, UngroupedNodes} =
case Grouped0 of
[] ->
{Grouped0, Ungrouped0};
_ ->
[FirstGrouped | RestGrouped] = lists:reverse(Grouped0),
{RestGrouped, [FirstGrouped | Ungrouped0]}
end,
GroupedReds = [R || {_, {_,R}} <- GroupedNodes],
case UngroupedNodes of
[{_Key, NodeInfo}|RestNodes] ->
{ok, Acc2, GroupedRedsAcc2, GroupedKVsAcc2, GroupedKey2} =
reduce_stream_node(Bt, Dir, NodeInfo, KeyStart, KeyEnd, GroupedKey,
GroupedKVsAcc, GroupedReds ++ GroupedRedsAcc, KeyGroupFun, Fun, Acc),
reduce_stream_kp_node2(Bt, Dir, RestNodes, KeyStart, KeyEnd, GroupedKey2,
GroupedKVsAcc2, GroupedRedsAcc2, KeyGroupFun, Fun, Acc2);
[] ->
{ok, Acc, GroupedReds ++ GroupedRedsAcc, GroupedKVsAcc, GroupedKey}
end.
adjust_dir(fwd, List) ->
List;
adjust_dir(rev, List) ->
lists:reverse(List).
stream_node(Bt, Reds, {Pointer, _Reds}, StartKey, InRange, Dir, Fun, Acc) ->
{NodeType, NodeList} = get_node(Bt, Pointer),
case NodeType of
kp_node ->
stream_kp_node(Bt, Reds, adjust_dir(Dir, NodeList), StartKey, InRange, Dir, Fun, Acc);
kv_node ->
stream_kv_node(Bt, Reds, adjust_dir(Dir, NodeList), StartKey, InRange, Dir, Fun, Acc)
end.
stream_node(Bt, Reds, {Pointer, _Reds}, InRange, Dir, Fun, Acc) ->
{NodeType, NodeList} = get_node(Bt, Pointer),
case NodeType of
kp_node ->
stream_kp_node(Bt, Reds, adjust_dir(Dir, NodeList), InRange, Dir, Fun, Acc);
kv_node ->
stream_kv_node2(Bt, Reds, [], adjust_dir(Dir, NodeList), InRange, Dir, Fun, Acc)
end.
stream_kp_node(_Bt, _Reds, [], _InRange, _Dir, _Fun, Acc) ->
{ok, Acc};
stream_kp_node(Bt, Reds, [{_Key, {Pointer, Red}} | Rest], InRange, Dir, Fun, Acc) ->
case stream_node(Bt, Reds, {Pointer, Red}, InRange, Dir, Fun, Acc) of
{ok, Acc2} ->
stream_kp_node(Bt, [Red | Reds], Rest, InRange, Dir, Fun, Acc2);
{stop, LastReds, Acc2} ->
{stop, LastReds, Acc2}
end.
drop_nodes(_Bt, Reds, _StartKey, []) ->
{Reds, []};
drop_nodes(Bt, Reds, StartKey, [{NodeKey, {Pointer, Red}} | RestKPs]) ->
case less(Bt, NodeKey, StartKey) of
true -> drop_nodes(Bt, [Red | Reds], StartKey, RestKPs);
false -> {Reds, [{NodeKey, {Pointer, Red}} | RestKPs]}
end.
stream_kp_node(Bt, Reds, KPs, StartKey, InRange, Dir, Fun, Acc) ->
{NewReds, NodesToStream} =
case Dir of
fwd ->
% drop all nodes sorting before the key
drop_nodes(Bt, Reds, StartKey, KPs);
rev ->
% keep all nodes sorting before the key, AND the first node to sort after
RevKPs = lists:reverse(KPs),
case lists:splitwith(fun({Key, _Pointer}) -> less(Bt, Key, StartKey) end, RevKPs) of
{_RevsBefore, []} ->
% everything sorts before it
{Reds, KPs};
{RevBefore, [FirstAfter | Drop]} ->
{[Red || {_K,{_P,Red}} <- Drop] ++ Reds,
[FirstAfter | lists:reverse(RevBefore)]}
end
end,
case NodesToStream of
[] ->
{ok, Acc};
[{_Key, {Pointer, Red}} | Rest] ->
case stream_node(Bt, NewReds, {Pointer, Red}, StartKey, InRange, Dir, Fun, Acc) of
{ok, Acc2} ->
stream_kp_node(Bt, [Red | NewReds], Rest, InRange, Dir, Fun, Acc2);
{stop, LastReds, Acc2} ->
{stop, LastReds, Acc2}
end
end.
stream_kv_node(Bt, Reds, KVs, StartKey, InRange, Dir, Fun, Acc) ->
DropFun =
case Dir of
fwd ->
fun({Key, _}) -> less(Bt, Key, StartKey) end;
rev ->
fun({Key, _}) -> less(Bt, StartKey, Key) end
end,
{LTKVs, GTEKVs} = lists:splitwith(DropFun, KVs),
AssembleLTKVs = [assemble(Bt,K,V) || {K,V} <- LTKVs],
stream_kv_node2(Bt, Reds, AssembleLTKVs, GTEKVs, InRange, Dir, Fun, Acc).
stream_kv_node2(_Bt, _Reds, _PrevKVs, [], _InRange, _Dir, _Fun, Acc) ->
{ok, Acc};
stream_kv_node2(Bt, Reds, PrevKVs, [{K,V} | RestKVs], InRange, Dir, Fun, Acc) ->
case InRange(K) of
false ->
{stop, {PrevKVs, Reds}, Acc};
true ->
AssembledKV = assemble(Bt, K, V),
case Fun(AssembledKV, {PrevKVs, Reds}, Acc) of
{ok, Acc2} ->
stream_kv_node2(Bt, Reds, [AssembledKV | PrevKVs], RestKVs, InRange, Dir, Fun, Acc2);
{stop, Acc2} ->
{stop, {PrevKVs, Reds}, Acc2}
end
end.