blob: c427f9da56e4e24538b069dd3eb22e1c42293a27 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
/**
* Test cases for BinomialDistribution. Extends DiscreteDistributionAbstractTest.
* See class javadoc for DiscreteDistributionAbstractTest for details.
*
*/
public class BinomialDistributionTest extends DiscreteDistributionAbstractTest {
//---------------------- Override tolerance --------------------------------
@BeforeEach
public void customSetUp() {
setTolerance(1e-12);
}
//-------------- Implementations for abstract methods ----------------------
/** Creates the default discrete distribution instance to use in tests. */
@Override
public DiscreteDistribution makeDistribution() {
return new BinomialDistribution(10, 0.70);
}
/** Creates the default probability density test input values. */
@Override
public int[] makeDensityTestPoints() {
return new int[] {-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
}
/**
* Creates the default probability density test expected values.
* Reference values are from R, version 2.15.3.
*/
@Override
public double[] makeDensityTestValues() {
return new double[] {0d, 0.0000059049d, 0.000137781d, 0.0014467005,
0.009001692, 0.036756909, 0.1029193452, 0.200120949, 0.266827932,
0.2334744405, 0.121060821, 0.0282475249, 0d};
}
/** Creates the default cumulative probability density test input values */
@Override
public int[] makeCumulativeTestPoints() {
return makeDensityTestPoints();
}
/**
* Creates the default cumulative probability density test expected values.
* Reference values are from R, version 2.15.3.
*/
@Override
public double[] makeCumulativeTestValues() {
return new double[] {0d, 5.9049e-06, 0.0001436859, 0.0015903864, 0.0105920784, 0.0473489874,
0.1502683326, 0.3503892816, 0.6172172136, 0.8506916541, 0.9717524751, 1d, 1d};
}
/** Creates the default inverse cumulative probability test input values */
@Override
public double[] makeInverseCumulativeTestPoints() {
return new double[] {0, 0.001d, 0.010d, 0.025d, 0.050d, 0.100d,
0.999d, 0.990d, 0.975d, 0.950d, 0.900d, 1d};
}
/**
* Creates the default inverse cumulative probability density test expected
* values
*/
@Override
public int[] makeInverseCumulativeTestValues() {
return new int[] {0, 2, 3, 4, 5, 5, 10, 10, 10, 9, 9, 10};
}
//-------------------- Additional test cases -------------------------------
/** Test degenerate case p = 0 */
@Test
public void testDegenerate0() {
BinomialDistribution dist = new BinomialDistribution(5, 0.0d);
setDistribution(dist);
setCumulativeTestPoints(new int[] {-1, 0, 1, 5, 10});
setCumulativeTestValues(new double[] {0d, 1d, 1d, 1d, 1d});
setDensityTestPoints(new int[] {-1, 0, 1, 10, 11});
setDensityTestValues(new double[] {0d, 1d, 0d, 0d, 0d});
setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d});
setInverseCumulativeTestValues(new int[] {0, 0});
verifyDensities();
verifyCumulativeProbabilities();
verifyInverseCumulativeProbabilities();
Assertions.assertEquals(0, dist.getSupportLowerBound());
Assertions.assertEquals(0, dist.getSupportUpperBound());
}
/** Test degenerate case p = 1 */
@Test
public void testDegenerate1() {
BinomialDistribution dist = new BinomialDistribution(5, 1.0d);
setDistribution(dist);
setCumulativeTestPoints(new int[] {-1, 0, 1, 2, 5, 10});
setCumulativeTestValues(new double[] {0d, 0d, 0d, 0d, 1d, 1d});
setDensityTestPoints(new int[] {-1, 0, 1, 2, 5, 10});
setDensityTestValues(new double[] {0d, 0d, 0d, 0d, 1d, 0d});
setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d});
setInverseCumulativeTestValues(new int[] {5, 5});
verifyDensities();
verifyCumulativeProbabilities();
verifyInverseCumulativeProbabilities();
Assertions.assertEquals(5, dist.getSupportLowerBound());
Assertions.assertEquals(5, dist.getSupportUpperBound());
}
/** Test degenerate case n = 0 */
@Test
public void testDegenerate2() {
BinomialDistribution dist = new BinomialDistribution(0, 0.01d);
setDistribution(dist);
setCumulativeTestPoints(new int[] {-1, 0, 1, 2, 5, 10});
setCumulativeTestValues(new double[] {0d, 1d, 1d, 1d, 1d, 1d});
setDensityTestPoints(new int[] {-1, 0, 1, 2, 5, 10});
setDensityTestValues(new double[] {0d, 1d, 0d, 0d, 0d, 0d});
setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d});
setInverseCumulativeTestValues(new int[] {0, 0});
verifyDensities();
verifyCumulativeProbabilities();
verifyInverseCumulativeProbabilities();
Assertions.assertEquals(0, dist.getSupportLowerBound());
Assertions.assertEquals(0, dist.getSupportUpperBound());
}
@Test
public void testParameterAccessors() {
for (final int n : new int[] {11, 42, 999}) {
for (final double p : new double[] {0.1, 0.456, 0.999}) {
final BinomialDistribution dist = new BinomialDistribution(n, p);
Assertions.assertEquals(n, dist.getNumberOfTrials());
Assertions.assertEquals(p, dist.getProbabilityOfSuccess());
}
}
}
@Test
public void testConstructorPrecondition1() {
Assertions.assertThrows(IllegalArgumentException.class, () -> new BinomialDistribution(-1, 0.1));
}
@Test
public void testConstructorPrecondition2() {
Assertions.assertThrows(IllegalArgumentException.class, () -> new BinomialDistribution(10, -0.1));
}
@Test
public void testConstructorPrecondition3() {
Assertions.assertThrows(IllegalArgumentException.class, () -> new BinomialDistribution(10, 1.1));
}
@Test
public void testMoments() {
final double tol = 1e-9;
BinomialDistribution dist;
dist = new BinomialDistribution(10, 0.5);
Assertions.assertEquals(10d * 0.5d, dist.getMean(), tol);
Assertions.assertEquals(10d * 0.5d * 0.5d, dist.getVariance(), tol);
dist = new BinomialDistribution(30, 0.3);
Assertions.assertEquals(30d * 0.3d, dist.getMean(), tol);
Assertions.assertEquals(30d * 0.3d * (1d - 0.3d), dist.getVariance(), tol);
}
@Test
public void testMath718() {
// for large trials the evaluation of ContinuedFraction was inaccurate
// do a sweep over several large trials to test if the current implementation is
// numerically stable.
for (int trials = 500000; trials < 20000000; trials += 100000) {
BinomialDistribution dist = new BinomialDistribution(trials, 0.5);
int p = dist.inverseCumulativeProbability(0.5);
Assertions.assertEquals(trials / 2, p);
}
}
}