blob: e52beb43e42dbbcbfb33b9eb7dd154f3f8c52ea8 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>.
*
* <ul>
* <li>
* For small means, a Poisson process is simulated using uniform deviates, as described in
* <blockquote>
* Knuth (1969). <i>Seminumerical Algorithms</i>. The Art of Computer Programming,
* Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution.
* Addison Wesley.
* </blockquote>
* The Poisson process (and hence, the returned value) is bounded by {@code 1000 * mean}.
* </li>
* </ul>
*
* <p>This sampler is suitable for {@code mean < 40}.
* For large means, {@link LargeMeanPoissonSampler} should be used instead.</p>
*
* <p>Sampling uses {@link UniformRandomProvider#nextDouble()} and requires on average
* {@code mean + 1} deviates per sample.</p>
*
* @since 1.1
*/
public class SmallMeanPoissonSampler
implements SharedStateDiscreteSampler {
/**
* Pre-compute {@code Math.exp(-mean)}.
* Note: This is the probability of the Poisson sample {@code P(n=0)}.
*/
private final double p0;
/** Pre-compute {@code 1000 * mean} as the upper limit of the sample. */
private final int limit;
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean.
* @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}
*/
public SmallMeanPoissonSampler(UniformRandomProvider rng,
double mean) {
this.rng = rng;
if (mean <= 0) {
throw new IllegalArgumentException("mean is not strictly positive: " + mean);
}
p0 = Math.exp(-mean);
if (p0 > 0) {
// The returned sample is bounded by 1000 * mean
limit = (int) Math.ceil(1000 * mean);
} else {
// This excludes NaN values for the mean
throw new IllegalArgumentException("No p(x=0) probability for mean: " + mean);
}
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
private SmallMeanPoissonSampler(UniformRandomProvider rng,
SmallMeanPoissonSampler source) {
this.rng = rng;
p0 = source.p0;
limit = source.limit;
}
/** {@inheritDoc} */
@Override
public int sample() {
int n = 0;
double r = 1;
while (n < limit) {
r *= rng.nextDouble();
if (r >= p0) {
n++;
} else {
break;
}
}
return n;
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Small Mean Poisson deviate [" + rng.toString() + "]";
}
/**
* {@inheritDoc}
*
* @since 1.3
*/
@Override
public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new SmallMeanPoissonSampler(rng, this);
}
/**
* Creates a new sampler for the Poisson distribution.
*
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean of the distribution.
* @return the sampler
* @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}.
* @since 1.3
*/
public static SharedStateDiscreteSampler of(UniformRandomProvider rng,
double mean) {
return new SmallMeanPoissonSampler(rng, mean);
}
}