blob: 6a70113339cb292cd2419079a6c4c73301a2c500 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.InternalUtils.FactorialLog;
/**
* Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>.
*
* <ul>
* <li>
* For large means, we use the rejection algorithm described in
* <blockquote>
* Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i><br>
* <strong>Computing</strong> vol. 26 pp. 197-207.
* </blockquote>
* </li>
* </ul>
*
* @since 1.1
*
* This sampler is suitable for {@code mean >= 40}.
*/
public class LargeMeanPoissonSampler
implements DiscreteSampler {
/** Class to compute {@code log(n!)}. This has no cached values. */
private static final InternalUtils.FactorialLog NO_CACHE_FACTORIAL_LOG;
static {
// Create without a cache.
NO_CACHE_FACTORIAL_LOG = FactorialLog.create();
}
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
/** Exponential. */
private final ContinuousSampler exponential;
/** Gaussian. */
private final ContinuousSampler gaussian;
/** Local class to compute {@code log(n!)}. This may have cached values. */
private final InternalUtils.FactorialLog factorialLog;
// Working values
/** Algorithm constant: {@code Math.floor(mean)}. */
private final double lambda;
/** Algorithm constant: {@code mean - lambda}. */
private final double lambdaFractional;
/** Algorithm constant: {@code Math.log(lambda)}. */
private final double logLambda;
/** Algorithm constant: {@code factorialLog((int) lambda)}. */
private final double logLambdaFactorial;
/** Algorithm constant: {@code Math.sqrt(lambda * Math.log(32 * lambda / Math.PI + 1))}. */
private final double delta;
/** Algorithm constant: {@code delta / 2}. */
private final double halfDelta;
/** Algorithm constant: {@code 2 * lambda + delta}. */
private final double twolpd;
/**
* Algorithm constant: {@code a1 / aSum} with
* <ul>
* <li>{@code a1 = Math.sqrt(Math.PI * twolpd) * Math.exp(c1)}</li>
* <li>{@code aSum = a1 + a2 + 1}</li>
* </ul>
*/
private final double p1;
/**
* Algorithm constant: {@code a1 / aSum} with
* <ul>
* <li>{@code a2 = (twolpd / delta) * Math.exp(-delta * (1 + delta) / twolpd)}</li>
* <li>{@code aSum = a1 + a2 + 1}</li>
* </ul>
*/
private final double p2;
/** Algorithm constant: {@code 1 / (8 * lambda)}. */
private final double c1;
/** The internal Poisson sampler for the lambda fraction. */
private final DiscreteSampler smallMeanPoissonSampler;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean.
* @throws IllegalArgumentException if {@code mean <= 0}.
*/
public LargeMeanPoissonSampler(UniformRandomProvider rng,
double mean) {
this.rng = rng;
if (mean <= 0) {
throw new IllegalArgumentException(mean + " <= " + 0);
}
gaussian = new ZigguratNormalizedGaussianSampler(rng);
exponential = new AhrensDieterExponentialSampler(rng, 1);
// Plain constructor uses the uncached function.
factorialLog = NO_CACHE_FACTORIAL_LOG;
// Cache values used in the algorithm
lambda = Math.floor(mean);
lambdaFractional = mean - lambda;
logLambda = Math.log(lambda);
logLambdaFactorial = factorialLog((int) lambda);
delta = Math.sqrt(lambda * Math.log(32 * lambda / Math.PI + 1));
halfDelta = delta / 2;
twolpd = 2 * lambda + delta;
c1 = 1 / (8 * lambda);
final double a1 = Math.sqrt(Math.PI * twolpd) * Math.exp(c1);
final double a2 = (twolpd / delta) * Math.exp(-delta * (1 + delta) / twolpd);
final double aSum = a1 + a2 + 1;
p1 = a1 / aSum;
p2 = a2 / aSum;
// The algorithm requires a Poisson sample from the remaining lambda fraction.
smallMeanPoissonSampler = (lambdaFractional < Double.MIN_VALUE) ?
null : // Not used.
new SmallMeanPoissonSampler(rng, lambdaFractional);
}
/** {@inheritDoc} */
@Override
public int sample() {
final int y2 = (smallMeanPoissonSampler == null) ?
0 : // No lambda fraction
smallMeanPoissonSampler.sample();
double x = 0;
double y = 0;
double v = 0;
int a = 0;
double t = 0;
double qr = 0;
double qa = 0;
while (true) {
final double u = rng.nextDouble();
if (u <= p1) {
final double n = gaussian.sample();
x = n * Math.sqrt(lambda + halfDelta) - 0.5d;
if (x > delta || x < -lambda) {
continue;
}
y = x < 0 ? Math.floor(x) : Math.ceil(x);
final double e = exponential.sample();
v = -e - 0.5 * n * n + c1;
} else {
if (u > p1 + p2) {
y = lambda;
break;
}
x = delta + (twolpd / delta) * exponential.sample();
y = Math.ceil(x);
v = -exponential.sample() - delta * (x + 1) / twolpd;
}
a = x < 0 ? 1 : 0;
t = y * (y + 1) / (2 * lambda);
if (v < -t && a == 0) {
y = lambda + y;
break;
}
qr = t * ((2 * y + 1) / (6 * lambda) - 1);
qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
if (v < qa) {
y = lambda + y;
break;
}
if (v > qr) {
continue;
}
if (v < y * logLambda - factorialLog((int) (y + lambda)) + logLambdaFactorial) {
y = lambda + y;
break;
}
}
return (int) Math.min(y2 + (long) y, Integer.MAX_VALUE);
}
/**
* Compute the natural logarithm of the factorial of {@code n}.
*
* @param n Argument.
* @return {@code log(n!)}
* @throws IllegalArgumentException if {@code n < 0}.
*/
private double factorialLog(int n) {
return factorialLog.value(n);
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Large Mean Poisson deviate [" + rng.toString() + "]";
}
}