blob: 751210f565d2fffbd6b062341d6b323a62a8f0e6 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import java.util.ArrayList;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.MethodSource;
/**
* Tests for random deviates generators.
*/
class ContinuousSamplerParametricTest {
private static Iterable<ContinuousSamplerTestData> getSamplerTestData() {
return ContinuousSamplersList.list();
}
@ParameterizedTest
@MethodSource("getSamplerTestData")
void testSampling(ContinuousSamplerTestData data) {
check(20000, data.getSampler(), data.getDeciles());
}
/**
* Performs a chi-square test of homogeneity of the observed
* distribution with the expected distribution.
* Tests are performed at the 1% level and an average failure rate
* higher than 5% causes the test case to fail.
*
* @param sampler Sampler.
* @param sampleSize Number of random values to generate.
* @param deciles Deciles.
*/
private static void check(long sampleSize,
ContinuousSampler sampler,
double[] deciles) {
final int numTests = 50;
// Do not change (statistical test assumes that dof = 9).
final int numBins = 10; // dof = numBins - 1
// Run the tests.
int numFailures = 0;
final double[] expected = new double[numBins];
Arrays.fill(expected, sampleSize / (double) numBins);
final long[] observed = new long[numBins];
// Chi-square critical value with 9 degrees of freedom
// and 1% significance level.
final double chi2CriticalValue = 21.665994333461924;
// For storing chi2 larger than the critical value.
final List<Double> failedStat = new ArrayList<>();
try {
final int lastDecileIndex = numBins - 1;
for (int i = 0; i < numTests; i++) {
Arrays.fill(observed, 0);
SAMPLE: for (long j = 0; j < sampleSize; j++) {
final double value = sampler.sample();
for (int k = 0; k < lastDecileIndex; k++) {
if (value < deciles[k]) {
++observed[k];
continue SAMPLE;
}
}
++observed[lastDecileIndex];
}
// Compute chi-square.
double chi2 = 0;
for (int k = 0; k < numBins; k++) {
final double diff = observed[k] - expected[k];
chi2 += diff * diff / expected[k];
}
// Statistics check.
if (chi2 > chi2CriticalValue) {
failedStat.add(chi2);
++numFailures;
}
}
} catch (Exception e) {
// Should never happen.
throw new RuntimeException("Unexpected", e);
}
// The expected number of failed tests can be modelled as a Binomial distribution
// B(n, p) with n=50, p=0.01 (50 tests with a 1% significance level).
// The cumulative probability of the number of failed tests (X) is:
// x P(X>x)
// 1 0.0894
// 2 0.0138
// 3 0.0016
if (numFailures > 3) { // Test will fail with 0.16% probability
Assertions.fail(String.format(
"%s: Too many failures for sample size = %d " +
"(%d out of %d tests failed, chi2 > %.3f=%s)",
sampler, sampleSize, numFailures, numTests, chi2CriticalValue,
failedStat.stream().map(d -> String.format("%.3f", d))
.collect(Collectors.joining(", ", "[", "]"))));
}
}
}