blob: ca2f7cee52ba61656b6cfe2beef34728af1f46a7 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Sampler for the <a href="http://mathworld.wolfram.com/PoissonDistribution.html">Poisson distribution</a>.
*
* <ul>
* <li>
* For small means, a Poisson process is simulated using uniform deviates, as
* described <a href="http://mathaa.epfl.ch/cours/PMMI2001/interactive/rng7.htm">here</a>.
* The Poisson process (and hence, the returned value) is bounded by 1000 * mean.
* </li>
* <li>
* For large means, we use the rejection algorithm described in
* <blockquote>
* Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i><br>
* <strong>Computing</strong> vol. 26 pp. 197-207.
* </blockquote>
* </li>
* </ul>
*/
public class PoissonSampler
extends SamplerBase
implements DiscreteSampler {
/** Value for switching sampling algorithm. */
private static final double PIVOT = 40;
/** Mean of the distribution. */
private final double mean;
/** Exponential. */
private final ContinuousSampler exponential;
/** Gaussian. */
private final ContinuousSampler gaussian;
/** {@code log(n!)}. */
private final InternalUtils.FactorialLog factorialLog;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean.
* @throws IllegalArgumentException if {@code mean <= 0}.
*/
public PoissonSampler(UniformRandomProvider rng,
double mean) {
super(rng);
if (mean <= 0) {
throw new IllegalArgumentException(mean + " <= " + 0);
}
this.mean = mean;
gaussian = new BoxMullerGaussianSampler(rng, 0, 1);
exponential = new AhrensDieterExponentialSampler(rng, 1);
factorialLog = mean < PIVOT ?
null : // Not used.
InternalUtils.FactorialLog.create().withCache((int) Math.min(mean, 2 * PIVOT));
}
/** {@inheritDoc} */
@Override
public int sample() {
return (int) Math.min(nextPoisson(mean), Integer.MAX_VALUE);
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Poisson deviate [" + super.toString() + "]";
}
/**
* @param meanPoisson Mean.
* @return the next sample.
*/
private long nextPoisson(double meanPoisson) {
if (meanPoisson < PIVOT) {
double p = Math.exp(-meanPoisson);
long n = 0;
double r = 1;
while (n < 1000 * meanPoisson) {
r *= nextDouble();
if (r >= p) {
n++;
} else {
break;
}
}
return n;
} else {
final double lambda = Math.floor(meanPoisson);
final double lambdaFractional = meanPoisson - lambda;
final double logLambda = Math.log(lambda);
final double logLambdaFactorial = factorialLog((int) lambda);
final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional);
final double delta = Math.sqrt(lambda * Math.log(32 * lambda / Math.PI + 1));
final double halfDelta = delta / 2;
final double twolpd = 2 * lambda + delta;
final double a1 = Math.sqrt(Math.PI * twolpd) * Math.exp(1 / (8 * lambda));
final double a2 = (twolpd / delta) * Math.exp(-delta * (1 + delta) / twolpd);
final double aSum = a1 + a2 + 1;
final double p1 = a1 / aSum;
final double p2 = a2 / aSum;
final double c1 = 1 / (8 * lambda);
double x = 0;
double y = 0;
double v = 0;
int a = 0;
double t = 0;
double qr = 0;
double qa = 0;
while (true) {
final double u = nextDouble();
if (u <= p1) {
final double n = gaussian.sample();
x = n * Math.sqrt(lambda + halfDelta) - 0.5d;
if (x > delta || x < -lambda) {
continue;
}
y = x < 0 ? Math.floor(x) : Math.ceil(x);
final double e = exponential.sample();
v = -e - 0.5 * n * n + c1;
} else {
if (u > p1 + p2) {
y = lambda;
break;
} else {
x = delta + (twolpd / delta) * exponential.sample();
y = Math.ceil(x);
v = -exponential.sample() - delta * (x + 1) / twolpd;
}
}
a = x < 0 ? 1 : 0;
t = y * (y + 1) / (2 * lambda);
if (v < -t && a == 0) {
y = lambda + y;
break;
}
qr = t * ((2 * y + 1) / (6 * lambda) - 1);
qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
if (v < qa) {
y = lambda + y;
break;
}
if (v > qr) {
continue;
}
if (v < y * logLambda - factorialLog((int) (y + lambda)) + logLambdaFactorial) {
y = lambda + y;
break;
}
}
return y2 + (long) y;
}
}
/**
* Compute the natural logarithm of the factorial of {@code n}.
*
* @param n Argument.
* @return {@code log(n!)}
* @throws IllegalArgumentException if {@code n < 0}.
*/
private double factorialLog(int n) {
return factorialLog.value(n);
}
}