blob: 5a2c0707ddae6cfae7cf2ff68ae0109cd6c593a4 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.complex;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import org.apache.commons.numbers.core.Precision;
/**
* Representation of a Complex number, i.e. a number which has both a
* real and imaginary part.
*
* <p>Implementations of arithmetic operations handle {@code NaN} and
* infinite values according to the rules for {@link java.lang.Double}, i.e.
* {@link #equals} is an equivalence relation for all instances that have
* a {@code NaN} in either real or imaginary part, e.g. the following are
* considered equal:</p>
* <ul>
* <li>{@code 1 + NaNi}</li>
* <li>{@code NaN + i}</li>
* <li>{@code NaN + NaNi}</li>
* </ul>
*
* <p>Note that this contradicts the IEEE-754 standard for floating
* point numbers (according to which the test {@code x == x} must fail if
* {@code x} is {@code NaN}). The method
* {@link org.apache.commons.numbers.core.Precision#equals(double,double,int)
* equals for primitive double} in class {@code Precision} conforms with
* IEEE-754 while this class conforms with the standard behavior for Java
* object types.</p>
*
* <p>Arithmetic in this class conforms to the C.99 standard for complex numbers
* defined in ISO/IEC 9899, Annex G.<p>
*
* @see <a href="http://www.open-std.org/JTC1/SC22/WG14/www/standards">
* ISO/IEC 9899 - Programming languages - C</a>
*/
public final class Complex implements Serializable {
/** The square root of -1, a.k.a. "i". */
public static final Complex I = new Complex(0, 1);
/** A complex number representing one. */
public static final Complex ONE = new Complex(1, 0);
/** A complex number representing zero. */
public static final Complex ZERO = new Complex(0, 0);
/** A complex number representing "NaN + NaN i". */
private static final Complex NAN = new Complex(Double.NaN, Double.NaN);
/** 3*&pi;/4. */
private static final double PI_3_OVER_4 = 0.75 * Math.PI;
/** &pi;/2. */
private static final double PI_OVER_2 = 0.5 * Math.PI;
/** &pi;/4. */
private static final double PI_OVER_4 = 0.25 * Math.PI;
/** Expected number of elements when parsing text: 2. */
private static final int TWO_ELEMENTS = 2;
/** Serializable version identifier. */
private static final long serialVersionUID = 20180201L;
/** {@link #toString() String representation}. */
private static final String FORMAT_START = "(";
/** {@link #toString() String representation}. */
private static final String FORMAT_END = ")";
/** {@link #toString() String representation}. */
private static final String FORMAT_SEP = ",";
/** The imaginary part. */
private final double imaginary;
/** The real part. */
private final double real;
/**
* Define a constructor for a Complex.
* This is used in functions that implement trigonomic identities.
*/
@FunctionalInterface
private interface ComplexConstructor {
/**
* Create a complex number given the real and imaginary parts.
*
* @param real Real part.
* @param imaginary Imaginary part.
* @return {@code Complex} object
*/
Complex create(double real, double imaginary);
}
/**
* Private default constructor.
*
* @param real Real part.
* @param imaginary Imaginary part.
*/
private Complex(double real, double imaginary) {
this.real = real;
this.imaginary = imaginary;
}
/**
* Create a complex number given the real and imaginary parts.
*
* @param real Real part.
* @param imaginary Imaginary part.
* @return {@code Complex} object
*/
public static Complex ofCartesian(double real, double imaginary) {
return new Complex(real, imaginary);
}
/**
* Create a complex number given the real part.
*
* @param real Real part.
* @return {@code Complex} object
*/
public static Complex ofReal(double real) {
return new Complex(real, 0);
}
/**
* Creates a Complex from its polar representation.
*
* <p>If {@code r} is infinite and {@code theta} is finite, infinite or NaN
* values may be returned in parts of the result, following the rules for
* double arithmetic.</p>
*
* <pre>
* Examples:
* {@code
* polar2Complex(INFINITY, \(\pi\)) = INFINITY + INFINITY i
* polar2Complex(INFINITY, 0) = INFINITY + NaN i
* polar2Complex(INFINITY, \(-\frac{\pi}{4}\)) = INFINITY - INFINITY i
* polar2Complex(INFINITY, \(5\frac{\pi}{4}\)) = -INFINITY - INFINITY i }
* </pre>
*
* @param r the modulus of the complex number to create
* @param theta the argument of the complex number to create
* @return {@code Complex}
* @throws IllegalArgumentException if {@code r} is non-positive
*/
public static Complex ofPolar(double r, double theta) {
if (r <= 0) {
throw new IllegalArgumentException("Non-positive polar modulus argument: " + r);
}
return new Complex(r * Math.cos(theta), r * Math.sin(theta));
}
/**
* For a real constructor argument x, returns a new Complex object c
* where {@code c = cos(x) + i sin (x)}.
*
* @param x {@code double} to build the cis number
* @return {@code Complex}
*/
public static Complex ofCis(double x) {
return new Complex(Math.cos(x), Math.sin(x));
}
/**
* Parses a string that would be produced by {@link #toString()}
* and instantiates the corresponding object.
*
* @param s String representation.
* @return an instance.
* @throws NumberFormatException if the string does not conform
* to the specification.
*/
public static Complex parse(String s) {
final int startParen = s.indexOf(FORMAT_START);
if (startParen != 0) {
throw new ComplexParsingException("Expected start string: " + FORMAT_START);
}
final int len = s.length();
final int endParen = s.indexOf(FORMAT_END);
if (endParen != len - 1) {
throw new ComplexParsingException("Expected end string: " + FORMAT_END);
}
final String[] elements = s.substring(1, s.length() - 1).split(FORMAT_SEP);
if (elements.length != TWO_ELEMENTS) {
throw new ComplexParsingException("Incorrect number of parts: Expected 2 but was " +
elements.length +
" (separator is '" + FORMAT_SEP + "')");
}
final double re;
try {
re = Double.parseDouble(elements[0]);
} catch (final NumberFormatException ex) {
throw new ComplexParsingException("Could not parse real part" + elements[0], ex);
}
final double im;
try {
im = Double.parseDouble(elements[1]);
} catch (final NumberFormatException ex) {
throw new ComplexParsingException("Could not parse imaginary part" + elements[1], ex);
}
return ofCartesian(re, im);
}
/**
* Returns true if either the real <em>or</em> imaginary component of the Complex is NaN
* <em>and</em> the Complex is not infinite.
*
* <p>Note that in contrast to {@link Double#isNaN()}:
* <ul>
* <li>There is more than one complex number that can return {@code true}.
* <li>Different representations of NaN can be distinguished by the
* {@link #equals(Object) Complex.equals(Object)} method.
* </ul>
*
* @return {@code true} if this instance contains NaN and no infinite parts.
* @see Double#isNaN(double)
* @see #isInfinite()
* @see #equals(Object) Complex.equals(Object)
*/
public boolean isNaN() {
if (Double.isNaN(real) || Double.isNaN(imaginary)) {
return !isInfinite();
}
return false;
}
/**
* Returns true if either real or imaginary component of the Complex is infinite.
*
* <p>Note: A complex or imaginary value with at least one infinite part is regarded
* as an infinity (even if its other part is a NaN).</p>
*
* @return {@code true} if this instance contains an infinite value.
* @see Double#isInfinite(double)
*/
public boolean isInfinite() {
return Double.isInfinite(real) || Double.isInfinite(imaginary);
}
/**
* Returns true if both real and imaginary component of the Complex are finite.
*
* @return {@code true} if this instance contains finite values.
* @see Double#isFinite(double)
*/
public boolean isFinite() {
return Double.isFinite(real) && Double.isFinite(imaginary);
}
/**
* Returns projection of this complex number onto the Riemann sphere,
* i.e. all infinities (including those with an NaN component)
* project onto real infinity, as described in the
* <a href="http://pubs.opengroup.org/onlinepubs/9699919799/functions/cproj.html">
* IEEE and ISO C standards</a>.
*
* @return {@code Complex} projected onto the Riemann sphere.
*/
public Complex proj() {
if (Double.isInfinite(real) ||
Double.isInfinite(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, 0);
}
return this;
}
/**
* Return the absolute value of this complex number.
* This code follows the <a href="http://www.iso-9899.info/wiki/The_Standard">ISO C Standard</a>, Annex G,
* in calculating the returned value (i.e. the hypot(x,y) method)
* and in handling of NaNs.
*
* @return the absolute value.
*/
public double abs() {
// Delegate
return Math.hypot(real, imaginary);
}
/**
* Returns a {@code Complex} whose value is
* {@code (this + addend)}.
* Uses the definitional formula
* <pre>
* (a + bi) + (c + di) = (a+c) + (b+d)i
* </pre>
*
* @param addend Value to be added to this {@code Complex}.
* @return {@code this + addend}.
*/
public Complex add(Complex addend) {
return new Complex(real + addend.real,
imaginary + addend.imaginary);
}
/**
* Returns a {@code Complex} whose value is {@code (this + addend)},
* with {@code addend} interpreted as a real number.
*
* @param addend Value to be added to this {@code Complex}.
* @return {@code this + addend}.
* @see #add(Complex)
*/
public Complex add(double addend) {
return new Complex(real + addend, imaginary);
}
/**
* Returns the conjugate of this complex number.
* The conjugate of {@code a + bi} is {@code a - bi}.
*
* @return the conjugate of this complex object.
*/
public Complex conjugate() {
return new Complex(real, -imaginary);
}
/**
* Returns the conjugate of this complex number
* (C++11 grammar).
*
* @return the conjugate of this complex object.
* @see #conjugate()
*/
public Complex conj() {
return conjugate();
}
/**
* Returns a {@code Complex} whose value is
* {@code (this / divisor)}.
* Implements the definitional formula
* <pre>
* <code>
* a + bi ac + bd + (bc - ad)i
* ------ = --------------------
* c + di c<sup>2</sup> + d<sup>2</sup>
* </code>
* </pre>
*
* <p>Recalculates to recover infinities as specified in C.99
* standard G.5.1. Method is fully in accordance with
* C++11 standards for complex numbers.</p>
*
* @param divisor Value by which this {@code Complex} is to be divided.
* @return {@code this / divisor}.
*/
public Complex divide(Complex divisor) {
double a = real;
double b = imaginary;
double c = divisor.getReal();
double d = divisor.getImaginary();
int ilogbw = 0;
final double logbw = Math.log(Math.max(Math.abs(c), Math.abs(d))) / Math.log(2);
if (Double.isFinite(logbw)) {
ilogbw = (int)logbw;
c = Math.scalb(c, -ilogbw);
d = Math.scalb(d, -ilogbw);
}
final double denom = c * c + d * d;
double x = Math.scalb((a * c + b * d) / denom, -ilogbw);
double y = Math.scalb((b * c - a * d) / denom, -ilogbw);
// Recover infinities and zeros that computed as NaN+iNaN
// the only cases are nonzero/zero, infinite/finite, and finite/infinite, ...
// --------------
// Modification from the listing in ISO C.99 G.5.1 (8):
// Prevent overflow in (a * c + b * d) and (b * c - a * d).
// It is only the sign that is important. not the magnitude.
// --------------
if (Double.isNaN(x) && Double.isNaN(y)) {
if ((denom == 0.0) &&
(!Double.isNaN(a) || !Double.isNaN(b))) {
// nonzero/zero
x = Math.copySign(Double.POSITIVE_INFINITY, c) * a;
y = Math.copySign(Double.POSITIVE_INFINITY, c) * b;
} else if ((Double.isInfinite(a) || Double.isInfinite(b)) &&
Double.isFinite(c) && Double.isFinite(d)) {
// infinite/finite
a = boxInfinity(a);
b = boxInfinity(b);
x = Double.POSITIVE_INFINITY * computeACplusBD(a, b, c, d);
y = Double.POSITIVE_INFINITY * computeBCminusAD(a, b, c, d);
} else if (divisor.isInfinite() &&
Double.isFinite(a) && Double.isFinite(b)) {
// finite/infinite
c = boxInfinity(c);
d = boxInfinity(d);
x = 0.0 * computeACplusBD(a, b, c, d);
y = 0.0 * computeBCminusAD(a, b, c, d);
}
}
return new Complex(x, y);
}
/**
* Compute {@code a*c + b*d} without overflow.
* It is assumed: either {@code a} and {@code b} or {@code c} and {@code d} are
* either zero or one (i.e. a boxed infinity); and the sign of the result is important,
* not the value.
*
* @param a the a
* @param b the b
* @param c the c
* @param d the d
* @return the result
*/
private static double computeACplusBD(double a, double b, double c, double d) {
final double ac = a * c;
final double bd = b * d;
final double result = ac + bd;
return Double.isFinite(result) ?
result :
// Overflow. Just divide by 2 as it is the sign of the result that matters.
ac * 0.5 + bd * 0.5;
}
/**
* Compute {@code b*c - a*d} without overflow.
* It is assumed: either {@code a} and {@code b} or {@code c} and {@code d} are
* either zero or one (i.e. a boxed infinity); and the sign of the result is important,
* not the value.
*
* @param a the a
* @param b the b
* @param c the c
* @param d the d
* @return the result
*/
private static double computeBCminusAD(double a, double b, double c, double d) {
final double bc = b * c;
final double ad = a * d;
final double result = bc - ad;
return Double.isFinite(result) ?
result :
// Overflow. Just divide by 2 as it is the sign of the result that matters.
bc * 0.5 + ad * 0.5;
}
/**
* Returns a {@code Complex} whose value is {@code (this / divisor)},
* with {@code divisor} interpreted as a real number.
*
* @param divisor Value by which this {@code Complex} is to be divided.
* @return {@code this / divisor}.
* @see #divide(Complex)
*/
public Complex divide(double divisor) {
return divide(new Complex(divisor, 0));
}
/**
* Returns the multiplicative inverse of this instance.
*
* @return {@code 1 / this}.
* @see #divide(Complex)
*/
public Complex reciprocal() {
if (Math.abs(real) < Math.abs(imaginary)) {
final double q = real / imaginary;
final double scale = 1. / (real * q + imaginary);
double scaleQ = 0;
if (q != 0 &&
scale != 0) {
scaleQ = scale * q;
}
return new Complex(scaleQ, -scale);
}
final double q = imaginary / real;
final double scale = 1. / (imaginary * q + real);
double scaleQ = 0;
if (q != 0 &&
scale != 0) {
scaleQ = scale * q;
}
return new Complex(scale, -scaleQ);
}
/**
* Test for equality with another object. If the other object is a {@code Complex} then a
* comparison is made of the real and imaginary parts; otherwise {@code false} is returned.
*
* <p>If both the real and imaginary parts of two complex numbers
* are exactly the same the two {@code Complex} objects are considered to be equal.
* For this purpose, two {@code double} values are considered to be
* the same if and only if the method {@link Double #doubleToLongBits(double)}
* returns the identical {@code long} value when applied to each.
*
* <p>Note that in most cases, for two instances of class
* {@code Complex}, {@code c1} and {@code c2}, the
* value of {@code c1.equals(c2)} is {@code true} if and only if
*
* <pre>
* {@code c1.getReal() == c2.getReal() && c1.getImaginary() == c2.getImaginary()}
* </pre>
*
* <p>also has the value {@code true}. However, there are exceptions:
*
* <ul>
* <li>
* Instances that contain {@code NaN} values in the same part
* are considered to be equal for that part, even though {@code Double.NaN==Double.NaN}
* has the value {@code false}.
* </li>
* <li>
* Instances that share a {@code NaN} value in one part
* but have different values in the other part are <em>not</em> considered equal.
* </li>
* <li>
* Instances that contain different representations of zero in the same part
* are <em>not</em> considered to be equal for that part, even though {@code -0.0==0.0}
* has the value {@code true}.
* </li>
* </ul>
*
* <p>The behavior is the same as if the components of the two complex numbers were passed
* to {@link java.util.Arrays#equals(double[], double[]) Arrays.equals(double[], double[])}:
*
* <pre>
* <code>
* Arrays.equals(new double[]{c1.getReal(), c1.getImaginary()},
* new double[]{c2.getReal(), c2.getImaginary()});
* </code>
* </pre>
*
* @param other Object to test for equality with this instance.
* @return {@code true} if the objects are equal, {@code false} if object
* is {@code null}, not an instance of {@code Complex}, or not equal to
* this instance.
* @see java.lang.Double#doubleToLongBits(double)
* @see java.util.Arrays#equals(double[], double[])
*/
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
}
if (other instanceof Complex) {
final Complex c = (Complex) other;
return equals(real, c.real) &&
equals(imaginary, c.imaginary);
}
return false;
}
/**
* Test for the floating-point equality between Complex objects.
* It returns {@code true} if both arguments are equal or within the
* range of allowed error (inclusive).
*
* @param x First value (cannot be {@code null}).
* @param y Second value (cannot be {@code null}).
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point
* values between the real (resp. imaginary) parts of {@code x} and
* {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating
* point values between the real (resp. imaginary) parts of {@code x}
* and {@code y}.
*
* @see Precision#equals(double,double,int)
*/
public static boolean equals(Complex x,
Complex y,
int maxUlps) {
return Precision.equals(x.real, y.real, maxUlps) &&
Precision.equals(x.imaginary, y.imaginary, maxUlps);
}
/**
* Returns {@code true} iff the values are equal as defined by
* {@link #equals(Complex,Complex,int) equals(x, y, 1)}.
*
* @param x First value (cannot be {@code null}).
* @param y Second value (cannot be {@code null}).
* @return {@code true} if the values are equal.
*/
public static boolean equals(Complex x,
Complex y) {
return equals(x, y, 1);
}
/**
* Returns {@code true} if, both for the real part and for the imaginary
* part, there is no double value strictly between the arguments or the
* difference between them is within the range of allowed error
* (inclusive). Returns {@code false} if either of the arguments is NaN.
*
* @param x First value (cannot be {@code null}).
* @param y Second value (cannot be {@code null}).
* @param eps Amount of allowed absolute error.
* @return {@code true} if the values are two adjacent floating point
* numbers or they are within range of each other.
*
* @see Precision#equals(double,double,double)
*/
public static boolean equals(Complex x,
Complex y,
double eps) {
return Precision.equals(x.real, y.real, eps) &&
Precision.equals(x.imaginary, y.imaginary, eps);
}
/**
* Returns {@code true} if, both for the real part and for the imaginary
* part, there is no double value strictly between the arguments or the
* relative difference between them is smaller or equal to the given
* tolerance. Returns {@code false} if either of the arguments is NaN.
*
* @param x First value (cannot be {@code null}).
* @param y Second value (cannot be {@code null}).
* @param eps Amount of allowed relative error.
* @return {@code true} if the values are two adjacent floating point
* numbers or they are within range of each other.
*
* @see Precision#equalsWithRelativeTolerance(double,double,double)
*/
public static boolean equalsWithRelativeTolerance(Complex x, Complex y,
double eps) {
return Precision.equalsWithRelativeTolerance(x.real, y.real, eps) &&
Precision.equalsWithRelativeTolerance(x.imaginary, y.imaginary, eps);
}
/**
* Get a hash code for the complex number.
*
* <p>The behavior is the same as if the components of the complex number were passed
* to {@link java.util.Arrays#hashCode(double[]) Arrays.hashCode(double[])}:
* <pre>
* {@code Arrays.hashCode(new double[]{getReal(), getImaginary()})}
* </pre>
*
* @return a hash code value for this object.
* @see java.util.Arrays#hashCode(double[]) Arrays.hashCode(double[])
*/
@Override
public int hashCode() {
return 31 * (31 + Double.hashCode(real)) + Double.hashCode(imaginary);
}
/**
* Access the imaginary part.
*
* @return the imaginary part.
*/
public double getImaginary() {
return imaginary;
}
/**
* Access the imaginary part (C++ grammar).
*
* @return the imaginary part.
*/
public double imag() {
return imaginary;
}
/**
* Access the real part.
*
* @return the real part.
*/
public double getReal() {
return real;
}
/**
* Access the real part (C++ grammar).
*
* @return the real part.
*/
public double real() {
return real;
}
/**
* Returns a {@code Complex} whose value is {@code this * factor}.
* Implements the definitional formula:
* <pre>
* (a + bi)(c + di) = (ac - bd) + (ad + bc)i
* </pre>
*
* <p>Recalculates to recover infinities as specified in C.99
* standard G.5.1. Method is fully in accordance with
* C++11 standards for complex numbers.</p>
*
* @param factor value to be multiplied by this {@code Complex}.
* @return {@code this * factor}.
*/
public Complex multiply(Complex factor) {
double a = real;
double b = imaginary;
double c = factor.getReal();
double d = factor.getImaginary();
final double ac = a * c;
final double bd = b * d;
final double ad = a * d;
final double bc = b * c;
double x = ac - bd;
double y = ad + bc;
// --------------
// NaN can occur if:
// - any of (a,b,c,d) are NaN (for NaN or Infinite complex numbers)
// - a multiplication of infinity by zero (ac,bd,ad,bc).
// - a subtraction of infinity from infinity (e.g. ac - bd)
// Note that (ac,bd,ad,bc) can be infinite due to overflow.
//
// Detect a NaN result and perform correction.
//
// Modification from the listing in ISO C.99 G.5.1 (6)
// Do not correct infinity multiplied by zero. This is left as NaN.
// --------------
if (Double.isNaN(x) && Double.isNaN(y)) {
// Recover infinities that computed as NaN+iNaN ...
boolean recalc = false;
if (isInfinite() && isNotZero(c, d)) {
// This complex is infinite.
// "Box" the infinity and change NaNs in the other factor to 0.
a = boxInfinity(a);
b = boxInfinity(b);
c = changeNaNtoZero(c);
d = changeNaNtoZero(d);
recalc = true;
}
// (c, d) may have been corrected so do not use factor.isInfinite().
if ((Double.isInfinite(c) || Double.isInfinite(d)) &&
isNotZero(a, b)) {
// This other complex is infinite.
// "Box" the infinity and change NaNs in the other factor to 0.
c = boxInfinity(c);
d = boxInfinity(d);
a = changeNaNtoZero(a);
b = changeNaNtoZero(b);
recalc = true;
}
if (!recalc && (Double.isInfinite(ac) || Double.isInfinite(bd) ||
Double.isInfinite(ad) || Double.isInfinite(bc))) {
// The result overflowed to infinity.
// Recover infinities from overflow by changing NaNs to 0 ...
a = changeNaNtoZero(a);
b = changeNaNtoZero(b);
c = changeNaNtoZero(c);
d = changeNaNtoZero(d);
recalc = true;
}
if (recalc) {
x = Double.POSITIVE_INFINITY * (a * c - b * d);
y = Double.POSITIVE_INFINITY * (a * d + b * c);
}
}
return new Complex(x, y);
}
/**
* Box values for the real or imaginary component of an infinite complex number.
* Any infinite value will be returned as one. Non-infinite values will be returned as zero.
* The sign is maintained.
*
* <pre>
* inf = 1
* -inf = -1
* x = 0
* -x = -0
* </pre>
*
* @param component the component
* @return the boxed value
*/
private static double boxInfinity(double component) {
return Math.copySign(Double.isInfinite(component) ? 1.0 : 0.0, component);
}
/**
* Checks if the complex number is not zero.
*
* @param real the real component
* @param imaginary the imaginary component
* @return true if the complex is zero
*/
private static boolean isNotZero(double real, double imaginary) {
// The use of equals is deliberate.
// This method must distinguish NaN from zero thus ruling out:
// (real != 0.0 || imaginary != 0.0)
return !(real == 0.0 && imaginary == 0.0);
}
/**
* Change NaN to zero preserving the sign; otherwise return the value.
*
* @param value the value
* @return the new value
*/
private static double changeNaNtoZero(double value) {
return Double.isNaN(value) ? Math.copySign(0.0, value) : value;
}
/**
* Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
* interpreted as a integer number.
*
* @param factor value to be multiplied by this {@code Complex}.
* @return {@code this * factor}.
* @see #multiply(Complex)
*/
public Complex multiply(final int factor) {
return new Complex(real * factor, imaginary * factor);
}
/**
* Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor}
* interpreted as a real number.
*
* @param factor value to be multiplied by this {@code Complex}.
* @return {@code this * factor}.
* @see #multiply(Complex)
*/
public Complex multiply(double factor) {
return new Complex(real * factor, imaginary * factor);
}
/**
* Returns a {@code Complex} whose value is {@code (-this)}.
*
* @return {@code -this}.
*/
public Complex negate() {
return new Complex(-real, -imaginary);
}
/**
* Returns a {@code Complex} whose value is
* {@code (this - subtrahend)}.
* Uses the definitional formula
* <p>
* {@code (a + bi) - (c + di) = (a-c) + (b-d)i}
* </p>
*
* @param subtrahend value to be subtracted from this {@code Complex}.
* @return {@code this - subtrahend}.
*/
public Complex subtract(Complex subtrahend) {
return new Complex(real - subtrahend.real,
imaginary - subtrahend.imaginary);
}
/**
* Returns a {@code Complex} whose value is
* {@code (this - subtrahend)}.
*
* @param subtrahend value to be subtracted from this {@code Complex}.
* @return {@code this - subtrahend}.
* @see #subtract(Complex)
*/
public Complex subtract(double subtrahend) {
return new Complex(real - subtrahend, imaginary);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseCosine.html">
* inverse cosine</a> of this complex number.
* Implements the formula:
* <pre>
* <code>
* acos(z) = -i (log(z + i (sqrt(1 - z<sup>2</sup>))))
* </code>
* </pre>
*
* @return the inverse cosine of this complex number.
*/
public Complex acos() {
if (real == 0 &&
Double.isNaN(imaginary)) {
return new Complex(PI_OVER_2, Double.NaN);
} else if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(PI_OVER_2, Double.NEGATIVE_INFINITY);
} else if (real == Double.NEGATIVE_INFINITY &&
imaginary == 1) {
return new Complex(Math.PI, Double.NEGATIVE_INFINITY);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == 1) {
return new Complex(0, Double.NEGATIVE_INFINITY);
} else if (real == Double.NEGATIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(PI_3_OVER_4, Double.NEGATIVE_INFINITY);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(PI_OVER_4, Double.NEGATIVE_INFINITY);
} else if (Double.isInfinite(real) &&
Double.isNaN(imaginary)) {
// Swap real and imaginary
return new Complex(Double.NaN, real);
} else if (Double.isNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.NaN, Double.NEGATIVE_INFINITY);
}
return add(sqrt1z().multiplyByI()).log().multiplyByNegI();
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseSine.html">
* inverse sine</a> of this complex number.
* <pre>
* <code>
* asin(z) = -i (log(sqrt(1 - z<sup>2</sup>) + iz))
* </code>
* </pre>
*
* <p>As per the C.99 standard this function is computed using the trigonomic identity:</p>
* <pre>
* asin(z) = -i asinh(iz)
* </pre>
*
* @return the inverse sine of this complex number
*/
public Complex asin() {
// Define in terms of asinh
// asin(z) = -i asinh(iz)
return multiplyByI().asinh().multiplyByNegI();
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseTangent.html">
* inverse tangent</a> of this complex number.
* Implements the formula:
* <pre>
* atan(z) = (i/2) log((i + z)/(i - z))
* </pre>
*
* <p>As per the C.99 standard this function is computed using the trigonomic identity:</p>
* <pre>
* atan(z) = -i atanh(iz)
* </pre>
*
* @return the inverse tangent of this complex number
*/
public Complex atan() {
// Define in terms of atanh
// atan(z) = -i atanh(iz)
return multiplyByI().atanh().multiplyByNegI();
}
/**
* Multiply the Complex by I.
*
* @return the result (iz)
*/
private Complex multiplyByI() {
return new Complex(-imaginary, real);
}
/**
* Multiply the Complex by -I.
*
* @return the result (-iz)
*/
private Complex multiplyByNegI() {
return new Complex(imaginary, -real);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseHyperbolicSine.html">
* inverse hyperbolic sine</a> of this complex number.
* Implements the formula:
* <pre>
* asinh(z) = log(z+sqrt(z^2+1))
* </pre>
*
* @return the inverse hyperbolic sine of this complex number
*/
public Complex asinh() {
if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, PI_OVER_2);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isFinite(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, PI_OVER_4);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == 0) {
return new Complex(Double.NaN, 0);
} else if (Double.isNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
}
return square().add(ONE).sqrt().add(this).log();
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseHyperbolicTangent.html">
* inverse hyperbolic tangent</a> of this complex number.
* Implements the formula:
* <pre>
* atanh(z) = log((1+z)/(1-z))/2
* </pre>
*
* @return the inverse hyperbolic tangent of this complex number
*/
public Complex atanh() {
if (real == 0 &&
Double.isNaN(imaginary)) {
return new Complex(0, Double.NaN);
} else if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == 0) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(0, PI_OVER_2);
} else if (real == Double.POSITIVE_INFINITY &&
neitherInfiniteNorZeroNorNaN(imaginary)) {
return new Complex(0, PI_OVER_2);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(0, PI_OVER_2);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(0, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(0, PI_OVER_2);
}
return add(ONE).divide(ONE.subtract(this)).log().multiply(0.5);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/InverseHyperbolicCosine.html">
* inverse hyperbolic cosine</a> of this complex number.
* Implements the formula:
* <pre>
* acosh(z) = log(z+sqrt(z^2-1))
* </pre>
*
* @return the inverse hyperbolic cosine of this complex number
*/
public Complex acosh() {
if (Double.isFinite(real)) {
if (real == 0 &&
imaginary == 0) {
return new Complex(0, PI_OVER_2);
}
if (imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, PI_OVER_2);
}
if (Double.isNaN(imaginary)) {
return NAN;
}
} else if (Double.isInfinite(real)) {
if (real == Double.NEGATIVE_INFINITY &&
positiveSignedFinite(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Math.PI);
}
if (real == Double.POSITIVE_INFINITY &&
positiveSignedFinite(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, 0);
}
if (real == Double.NEGATIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, PI_3_OVER_4);
}
if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, PI_OVER_4);
}
if (Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
}
} else if (Double.isNaN(real)) {
if (imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
}
if (Double.isFinite(imaginary) || Double.isNaN(imaginary)) {
// optionally raises the ‘‘invalid’’ floating-point exception, for finite y.
// No condition for imaginary as negative infinity
return NAN;
}
}
return square().subtract(ONE).sqrt().add(this).log();
}
/**
* Compute the square of this complex number.
*
* @return square of this complex number
*/
public Complex square() {
return multiply(this);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/Cosine.html">
* cosine</a> of this complex number.
* Implements the formula:
* <pre>
* cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i}
* </pre>
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos},
* {@link Math#cosh} and {@link Math#sinh}.
*
* <p>As per the C.99 standard this function is computed using the trigonomic identity:</p>
* <pre>
* cos(z) = cosh(iz)
* </pre>
*
* @return the cosine of this complex number.
*/
public Complex cos() {
// Define in terms of cosh
// cos(z) = cosh(iz)
// Multiply this number by I and compute cosh.
return cosh(-imaginary, real, Complex::ofCartesian);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/HyperbolicCosine.html">
* hyperbolic cosine</a> of this complex number.
* Implements the formula:
* <pre>
* cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
* </pre>
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos},
* {@link Math#cosh} and {@link Math#sinh}.
*
* @return the hyperbolic cosine of this complex number.
*/
public Complex cosh() {
return cosh(real, imaginary, Complex::ofCartesian);
}
/**
* Compute the hyperbolic cosine of the complex number.
*
* <p>This function exists to allow implementation of the identity
* {@code cos(z) = cosh(iz)}.<p>
*
* @param real Real part.
* @param imaginary Imaginary part.
* @param constructor Constructor.
* @return the hyperbolic cosine of this complex number
*/
private static Complex cosh(double real, double imaginary, ComplexConstructor constructor) {
if (real == 0 &&
imaginary == Double.POSITIVE_INFINITY) {
return constructor.create(Double.NaN, 0);
} else if (real == 0 &&
Double.isNaN(imaginary)) {
return constructor.create(Double.NaN, 0);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == 0) {
return constructor.create(Double.POSITIVE_INFINITY, 0);
} else if (real == Double.POSITIVE_INFINITY &&
(imaginary == Double.POSITIVE_INFINITY || Double.isNaN(imaginary))) {
return constructor.create(Double.POSITIVE_INFINITY, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == 0) {
return constructor.create(Double.NaN, 0);
}
return constructor.create(Math.cosh(real) * Math.cos(imaginary),
Math.sinh(real) * Math.sin(imaginary));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/ExponentialFunction.html">
* exponential function</a> of this complex number.
* Implements the formula:
* <pre>
* exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
* </pre>
* where the (real) functions on the right-hand side are
* {@link Math#exp}, {@link Math#cos}, and
* {@link Math#sin}.
*
* @return <code><i>e</i><sup>this</sup></code>.
*/
public Complex exp() {
if (real == Double.POSITIVE_INFINITY &&
imaginary == 0) {
return new Complex(Double.POSITIVE_INFINITY, 0);
} else if (real == Double.NEGATIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return Complex.ZERO;
} else if (real == Double.POSITIVE_INFINITY &&
(imaginary == Double.POSITIVE_INFINITY || Double.isNaN(imaginary))) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
} else if (real == Double.NEGATIVE_INFINITY &&
Double.isNaN(imaginary)) {
return Complex.ZERO;
} else if (Double.isNaN(real) &&
imaginary == 0) {
return new Complex(Double.NaN, 0);
}
final double expReal = Math.exp(real);
return new Complex(expReal * Math.cos(imaginary),
expReal * Math.sin(imaginary));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/NaturalLogarithm.html">
* natural logarithm</a> of this complex number.
* Implements the formula:
* <pre>
* log(a + bi) = ln(|a + bi|) + arg(a + bi)i
* </pre>
* where ln on the right hand side is {@link Math#log},
* {@code |a + bi|} is the modulus, {@link Complex#abs}, and
* {@code arg(a + bi) = }{@link Math#atan2}(b, a).
*
* @return the value <code>ln &nbsp; this</code>, the natural logarithm
* of {@code this}.
*/
public Complex log() {
if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, PI_OVER_4);
} else if ((real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) ||
(Double.isNaN(real) &&
imaginary == Double.POSITIVE_INFINITY)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
}
return new Complex(Math.log(abs()),
Math.atan2(imaginary, real));
}
/**
* Compute the base 10 or
* <a href="http://mathworld.wolfram.com/CommonLogarithm.html">
* common logarithm</a> of this complex number.
*
* @return the base 10 logarithm of <code>this</code>.
*/
public Complex log10() {
Complex logE = log();
return ofCartesian(logE.real / Math.log(10), logE.imaginary);
}
/**
* Returns of value of this complex number raised to the power of {@code x}.
* Implements the formula:
* <pre>
* <code>
* y<sup>x</sup> = exp(x&middot;log(y))
* </code>
* </pre>
* where {@code exp} and {@code log} are {@link #exp} and
* {@link #log}, respectively.
*
* @param x exponent to which this {@code Complex} is to be raised.
* @return <code>this<sup>x</sup></code>.
*/
public Complex pow(Complex x) {
if (real == 0 &&
imaginary == 0) {
// This value is zero. Test the other.
if (x.real > 0 &&
x.imaginary == 0) {
// 0 raised to positive number is 0
return ZERO;
}
// 0 raised to anything else is NaN
return NAN;
}
return log().multiply(x).exp();
}
/**
* Returns of value of this complex number raised to the power of {@code x}.
*
* @param x exponent to which this {@code Complex} is to be raised.
* @return <code>this<sup>x</sup></code>.
* @see #pow(Complex)
*/
public Complex pow(double x) {
if (real == 0 &&
imaginary == 0) {
// This value is zero. Test the other.
if (x > 0) {
// 0 raised to positive number is 0
return ZERO;
}
// 0 raised to anything else is NaN
return NAN;
}
return log().multiply(x).exp();
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/Sine.html">
* sine</a>
* of this complex number.
* Implements the formula:
* <pre>
* sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
* </pre>
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos},
* {@link Math#cosh} and {@link Math#sinh}.
*
* <p>As per the C.99 standard this function is computed using the trigonomic identity:</p>
* <pre>
* sin(z) = -i sinh(iz)
* </pre>
*
* @return the sine of this complex number.
*/
public Complex sin() {
// Define in terms of sinh
// sin(z) = -i sinh(iz)
// Multiply this number by I, compute cosh, then multiply by back
return sinh(-imaginary, real, Complex::multiplyNegativeI);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/HyperbolicSine.html">
* hyperbolic sine</a> of this complex number.
* Implements the formula:
* <pre>
* sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
* </pre>
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos},
* {@link Math#cosh} and {@link Math#sinh}.
*
* @return the hyperbolic sine of {@code this}.
*/
public Complex sinh() {
return sinh(real, imaginary, Complex::ofCartesian);
}
/**
* Compute the hyperbolic sine of the complex number.
*
* <p>This function exists to allow implementation of the identity
* {@code sin(z) = -i sinh(iz)}.<p>
*
* @param real Real part.
* @param imaginary Imaginary part.
* @param constructor Constructor.
* @return the hyperbolic sine of this complex number
*/
private static Complex sinh(double real, double imaginary, ComplexConstructor constructor) {
if (real == 0 &&
imaginary == 0) {
// Ignore the constructor.
// It is used in trignomic identities to multiply the result by -i.
// Here the result would still be zero.
return Complex.ZERO;
} else if (real == 0 &&
imaginary == Double.POSITIVE_INFINITY) {
return constructor.create(0, Double.NaN);
} else if (real == 0 &&
Double.isNaN(imaginary)) {
return constructor.create(0, Double.NaN);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == 0) {
return constructor.create(Double.POSITIVE_INFINITY, 0);
} else if (real == Double.POSITIVE_INFINITY &&
imaginary == Double.POSITIVE_INFINITY) {
return constructor.create(Double.POSITIVE_INFINITY, Double.NaN);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return constructor.create(Double.POSITIVE_INFINITY, Double.NaN);
} else if (Double.isNaN(real) &&
imaginary == 0) {
return constructor.create(Double.NaN, 0);
}
return constructor.create(Math.sinh(real) * Math.cos(imaginary),
Math.cosh(real) * Math.sin(imaginary));
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/SquareRoot.html">
* square root</a> of this complex number.
* Implements the following algorithm to compute {@code sqrt(a + bi)}:
* <ol><li>Let {@code t = sqrt((|a| + |a + bi|) / 2)}</li>
* <li><pre>if {@code a &#8805; 0} return {@code t + (b/2t)i}
* else return {@code |b|/2t + sign(b)t i }</pre></li>
* </ol>
* where <ul>
* <li>{@code |a| = }{@link Math#abs}(a)</li>
* <li>{@code |a + bi| = }{@link Complex#abs}(a + bi)</li>
* <li>{@code sign(b) = }{@link Math#copySign(double,double) copySign(1d, b)}
* </ul>
*
* @return the square root of {@code this}.
*/
public Complex sqrt() {
if (real == 0 &&
imaginary == 0) {
return ZERO;
} else if (neitherInfiniteNorZeroNorNaN(real) &&
imaginary == Double.POSITIVE_INFINITY) {
return new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
} else if (real == Double.NEGATIVE_INFINITY &&
neitherInfiniteNorZeroNorNaN(imaginary)) {
return new Complex(0, Double.NaN);
} else if (real == Double.NEGATIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.NaN, Double.POSITIVE_INFINITY);
} else if (real == Double.POSITIVE_INFINITY &&
Double.isNaN(imaginary)) {
return new Complex(Double.POSITIVE_INFINITY, Double.NaN);
}
final double t = Math.sqrt((Math.abs(real) + abs()) / 2);
if (real >= 0) {
return new Complex(t, imaginary / (2 * t));
}
return new Complex(Math.abs(imaginary) / (2 * t),
Math.copySign(1d, imaginary) * t);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/SquareRoot.html">
* square root</a> of <code>1 - this<sup>2</sup></code> for this complex
* number.
*
* <p>Computes the result directly as
* {@code sqrt(ONE.subtract(z.multiply(z)))}.</p>
*
* @return the square root of <code>1 - this<sup>2</sup></code>.
*/
private Complex sqrt1z() {
return ONE.subtract(square()).sqrt();
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/Tangent.html">
* tangent</a> of this complex number.
* Implements the formula:
* <pre>
* tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
* </pre>
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos}, {@link Math#cosh} and
* {@link Math#sinh}.
*
* <p>As per the C.99 standard this function is computed using the trigonomic identity:</p>
* <pre>
* tan(z) = -i tanh(iz)
* </pre>
*
* @return the tangent of {@code this}.
*/
public Complex tan() {
// Define in terms of tanh
// tan(z) = -i tanh(iz)
// Multiply this number by I, compute cosh, then multiply by back
return tanh(-imaginary, real, Complex::multiplyNegativeI);
}
/**
* Compute the
* <a href="http://mathworld.wolfram.com/HyperbolicTangent.html">
* hyperbolic tangent</a> of this complex number.
* Implements the formula:
* <pre>
* tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
* </pre>
* where the (real) functions on the right-hand side are
* {@link Math#sin}, {@link Math#cos}, {@link Math#cosh} and
* {@link Math#sinh}.
*
* @return the hyperbolic tangent of {@code this}.
*/
public Complex tanh() {
return tanh(real, imaginary, Complex::ofCartesian);
}
/**
* Compute the hyperbolic tangent of this complex number.
*
* <p>This function exists to allow implementation of the identity
* {@code tan(z) = -i tanh(iz)}.<p>
*
* @param real Real part.
* @param imaginary Imaginary part.
* @param constructor Constructor.
* @return the hyperbolic tangent of this complex number
*/
private static Complex tanh(double real, double imaginary, ComplexConstructor constructor) {
// TODO: Should these checks be made on real2 and imaginary2?
// Compare to other library implementations.
//
// Math.cos and Math.sin return NaN for infinity.
// Math.cosh returns positive infinity for infinity.
// Math.sinh returns the input infinity for infinity.
if (real == Double.POSITIVE_INFINITY &&
(imaginary == Double.POSITIVE_INFINITY || Double.isNaN(imaginary))) {
return constructor.create(1, 0);
} else if (Double.isNaN(real) &&
imaginary == 0) {
return constructor.create(Double.NaN, 0);
}
final double real2 = 2 * real;
final double imaginary2 = 2 * imaginary;
final double d = Math.cosh(real2) + Math.cos(imaginary2);
return constructor.create(Math.sinh(real2) / d,
Math.sin(imaginary2) / d);
}
/**
* Compute the argument of this complex number.
* The argument is the angle phi between the positive real axis and
* the point representing this number in the complex plane.
* The value returned is between -PI (not inclusive)
* and PI (inclusive), with negative values returned for numbers with
* negative imaginary parts.
*
* <p>If either real or imaginary part (or both) is NaN, NaN is returned.
* Infinite parts are handled as {@code Math.atan2} handles them,
* essentially treating finite parts as zero in the presence of an
* infinite coordinate and returning a multiple of pi/4 depending on
* the signs of the infinite parts.
* See the javadoc for {@code Math.atan2} for full details.</p>
*
* @return the argument of {@code this}.
*/
public double getArgument() {
// Delegate
return Math.atan2(imaginary, real);
}
/**
* Compute the argument of this complex number
* (C++11 grammar).
*
* @return the argument of {@code this}.
* @see #getArgument()
*/
public double arg() {
return getArgument();
}
/**
* Computes the n-th roots of this complex number.
* The nth roots are defined by the formula:
* <pre>
* <code>
* z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2&pi;k/n) + i (sin(phi + 2&pi;k/n))
* </code>
* </pre>
* for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi}
* are respectively the {@link #abs() modulus} and
* {@link #getArgument() argument} of this complex number.
*
* <p>If one or both parts of this complex number is NaN, a list with all
* all elements set to {@code NaN + NaN i} is returned.</p>
*
* @param n Degree of root.
* @return a List of all {@code n}-th roots of {@code this}.
* @throws IllegalArgumentException if {@code n} is zero.
*/
public List<Complex> nthRoot(int n) {
if (n == 0) {
throw new IllegalArgumentException("cannot compute zeroth root");
}
final List<Complex> result = new ArrayList<>();
// nth root of abs -- faster / more accurate to use a solver here?
final double nthRootOfAbs = Math.pow(abs(), 1d / n);
// Compute nth roots of complex number with k = 0, 1, ... n-1
final double nthPhi = getArgument() / n;
final double slice = 2 * Math.PI / n;
double innerPart = nthPhi;
for (int k = 0; k < Math.abs(n); k++) {
// inner part
final double realPart = nthRootOfAbs * Math.cos(innerPart);
final double imaginaryPart = nthRootOfAbs * Math.sin(innerPart);
result.add(new Complex(realPart, imaginaryPart));
innerPart += slice;
}
return result;
}
/** {@inheritDoc} */
@Override
public String toString() {
final StringBuilder s = new StringBuilder();
s.append(FORMAT_START)
.append(real).append(FORMAT_SEP)
.append(imaginary)
.append(FORMAT_END);
return s.toString();
}
/**
* Returns {@code true} if the values are equal according to semantics of
* {@link Double#equals(Object)}.
*
* @param x Value
* @param y Value
* @return {@code Double.valueof(x).equals(Double.valueOf(y))}
*/
private static boolean equals(double x, double y) {
return Double.doubleToLongBits(x) == Double.doubleToLongBits(y);
}
/**
* Check that a value meets all the following conditions.
* <ul>
* <li>it is not {@code NaN},</li>
* <li>it is not infinite,</li>
* <li>it is not zero,</li>
* </ul>
*
* @param d Value.
* @return {@code true} if {@code d} meets all the conditions and
* {@code false} otherwise.
*/
private static boolean neitherInfiniteNorZeroNorNaN(double d) {
return Double.isFinite(d) && d != 0;
}
/**
* Check that a value meets all the following conditions.
* <ul>
* <li>it is not {@code NaN},</li>
* <li>it is not infinite,</li>
* <li>it is positive signed,</li>
* </ul>
*
* <p>Note: This is false for negative zero.</p>
*
* @param d Value.
* @return {@code true} if {@code d} meets all the conditions and
* {@code false} otherwise.
*/
private static boolean positiveSignedFinite(double d) {
return (Double.isFinite(d) && d > 0) || Double.doubleToLongBits(d) == 0;
}
/**
* Create a complex number given the real and imaginary parts, then multiply by {@code -i}.
* This is used in functions that implement trigonomic identities. It is the functional
* equivalent of:
*
* <pre>
* z = new Complex(real, imaginary).multiply(new Complex(0, -1));
* </pre>
*
* @param real Real part.
* @param imaginary Imaginary part.
* @return {@code Complex} object
*/
private static Complex multiplyNegativeI(double real, double imaginary) {
return new Complex(imaginary, -real);
}
/** See {@link #parse(String)}. */
private static class ComplexParsingException extends NumberFormatException {
/** Serializable version identifier. */
private static final long serialVersionUID = 20180430L;
/**
* @param msg Error message.
*/
ComplexParsingException(String msg) {
super(msg);
}
/**
* @param msg Error message.
* @param cause Cause.
*/
ComplexParsingException(String msg, Throwable cause) {
super(msg);
initCause(cause);
}
}
}