blob: fe617ca0ac5d4de83331ef08f614df915fc8148e [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.distribution;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.junit.Assert;
import org.junit.Test;
/**
* Test cases for FDistribution.
* Extends ContinuousDistributionAbstractTest. See class javadoc for
* ContinuousDistributionAbstractTest for details.
*
*/
public class FDistributionTest extends RealDistributionAbstractTest {
//-------------- Implementations for abstract methods -----------------------
/** Creates the default continuous distribution instance to use in tests. */
@Override
public FDistribution makeDistribution() {
return new FDistribution(5.0, 6.0);
}
/** Creates the default cumulative probability distribution test input values */
@Override
public double[] makeCumulativeTestPoints() {
// quantiles computed using R version 2.9.2
return new double[] {0.0346808448626, 0.0937009113303, 0.143313661184, 0.202008445998, 0.293728320107,
20.8026639595, 8.74589525602, 5.98756512605, 4.38737418741, 3.10751166664};
}
/** Creates the default cumulative probability density test expected values */
@Override
public double[] makeCumulativeTestValues() {
return new double[] {0.001, 0.01, 0.025, 0.05, 0.1, 0.999, 0.990, 0.975, 0.950, 0.900};
}
/** Creates the default probability density test expected values */
@Override
public double[] makeDensityTestValues() {
return new double[] {0.0689156576706, 0.236735653193, 0.364074131941, 0.481570789649, 0.595880479994,
0.000133443915657, 0.00286681303403, 0.00969192007502, 0.0242883861471, 0.0605491314658};
}
// --------------------- Override tolerance --------------
@Override
public void setUp() {
super.setUp();
setTolerance(1e-9);
}
//---------------------------- Additional test cases -------------------------
@Test
public void testCumulativeProbabilityExtremes() {
setCumulativeTestPoints(new double[] {-2, 0});
setCumulativeTestValues(new double[] {0, 0});
verifyCumulativeProbabilities();
}
@Test
public void testInverseCumulativeProbabilityExtremes() {
setInverseCumulativeTestPoints(new double[] {0, 1});
setInverseCumulativeTestValues(new double[] {0, Double.POSITIVE_INFINITY});
verifyInverseCumulativeProbabilities();
}
@Test
public void testDfAccessors() {
FDistribution dist = (FDistribution) getDistribution();
Assert.assertEquals(5d, dist.getNumeratorDegreesOfFreedom(), Double.MIN_VALUE);
Assert.assertEquals(6d, dist.getDenominatorDegreesOfFreedom(), Double.MIN_VALUE);
}
@Test
public void testPreconditions() {
try {
new FDistribution(0, 1);
Assert.fail("Expecting NotStrictlyPositiveException for df = 0");
} catch (NotStrictlyPositiveException ex) {
// Expected.
}
try {
new FDistribution(1, 0);
Assert.fail("Expecting NotStrictlyPositiveException for df = 0");
} catch (NotStrictlyPositiveException ex) {
// Expected.
}
}
@Test
public void testLargeDegreesOfFreedom() {
FDistribution fd = new FDistribution(100000, 100000);
double p = fd.cumulativeProbability(.999);
double x = fd.inverseCumulativeProbability(p);
Assert.assertEquals(.999, x, 1.0e-5);
}
@Test
public void testSmallDegreesOfFreedom() {
FDistribution fd = new FDistribution(1, 1);
double p = fd.cumulativeProbability(0.975);
double x = fd.inverseCumulativeProbability(p);
Assert.assertEquals(0.975, x, 1.0e-5);
fd = new FDistribution(1, 2);
p = fd.cumulativeProbability(0.975);
x = fd.inverseCumulativeProbability(p);
Assert.assertEquals(0.975, x, 1.0e-5);
}
@Test
public void testMoments() {
final double tol = 1e-9;
FDistribution dist;
dist = new FDistribution(1, 2);
Assert.assertTrue(Double.isNaN(dist.getNumericalMean()));
Assert.assertTrue(Double.isNaN(dist.getNumericalVariance()));
dist = new FDistribution(1, 3);
Assert.assertEquals(dist.getNumericalMean(), 3d / (3d - 2d), tol);
Assert.assertTrue(Double.isNaN(dist.getNumericalVariance()));
dist = new FDistribution(1, 5);
Assert.assertEquals(dist.getNumericalMean(), 5d / (5d - 2d), tol);
Assert.assertEquals(dist.getNumericalVariance(), (2d * 5d * 5d * 4d) / 9d, tol);
}
@Test
public void testMath785() {
// this test was failing due to inaccurate results from ContinuedFraction.
try {
double prob = 0.01;
FDistribution f = new FDistribution(200000, 200000);
double result = f.inverseCumulativeProbability(prob);
Assert.assertTrue(result < 1.0);
} catch (Exception e) {
Assert.fail("Failing to calculate inverse cumulative probability");
}
}
}