blob: caa43e66f051477f80e956eb7b0818f168179e14 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.optimization;
/**
* This class implements the Nelder-Mead direct search method.
*
* @version $Revision$ $Date$
* @see MultiDirectional
* @since 1.2
*/
public class NelderMead
extends DirectSearchOptimizer {
/** Build a Nelder-Mead optimizer with default coefficients.
* <p>The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
* for both gamma and sigma.</p>
*/
public NelderMead() {
super();
this.rho = 1.0;
this.khi = 2.0;
this.gamma = 0.5;
this.sigma = 0.5;
}
/** Build a Nelder-Mead optimizer with specified coefficients.
* @param rho reflection coefficient
* @param khi expansion coefficient
* @param gamma contraction coefficient
* @param sigma shrinkage coefficient
*/
public NelderMead(double rho, double khi, double gamma, double sigma) {
super();
this.rho = rho;
this.khi = khi;
this.gamma = gamma;
this.sigma = sigma;
}
/** Compute the next simplex of the algorithm.
* @exception CostException if the function cannot be evaluated at
* some point
*/
protected void iterateSimplex()
throws CostException {
// the simplex has n+1 point if dimension is n
int n = simplex.length - 1;
// interesting costs
double smallest = simplex[0].getCost();
double secondLargest = simplex[n-1].getCost();
double largest = simplex[n].getCost();
double[] xLargest = simplex[n].getPoint();
// compute the centroid of the best vertices
// (dismissing the worst point at index n)
double[] centroid = new double[n];
for (int i = 0; i < n; ++i) {
double[] x = simplex[i].getPoint();
for (int j = 0; j < n; ++j) {
centroid[j] += x[j];
}
}
double scaling = 1.0 / n;
for (int j = 0; j < n; ++j) {
centroid[j] *= scaling;
}
// compute the reflection point
double[] xR = new double[n];
for (int j = 0; j < n; ++j) {
xR[j] = centroid[j] + rho * (centroid[j] - xLargest[j]);
}
double costR = evaluateCost(xR);
if ((smallest <= costR) && (costR < secondLargest)) {
// accept the reflected point
replaceWorstPoint(new PointCostPair(xR, costR));
} else if (costR < smallest) {
// compute the expansion point
double[] xE = new double[n];
for (int j = 0; j < n; ++j) {
xE[j] = centroid[j] + khi * (xR[j] - centroid[j]);
}
double costE = evaluateCost(xE);
if (costE < costR) {
// accept the expansion point
replaceWorstPoint(new PointCostPair(xE, costE));
} else {
// accept the reflected point
replaceWorstPoint(new PointCostPair(xR, costR));
}
} else {
if (costR < largest) {
// perform an outside contraction
double[] xC = new double[n];
for (int j = 0; j < n; ++j) {
xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]);
}
double costC = evaluateCost(xC);
if (costC <= costR) {
// accept the contraction point
replaceWorstPoint(new PointCostPair(xC, costC));
return;
}
} else {
// perform an inside contraction
double[] xC = new double[n];
for (int j = 0; j < n; ++j) {
xC[j] = centroid[j] - gamma * (centroid[j] - xLargest[j]);
}
double costC = evaluateCost(xC);
if (costC < largest) {
// accept the contraction point
replaceWorstPoint(new PointCostPair(xC, costC));
return;
}
}
// perform a shrink
double[] xSmallest = simplex[0].getPoint();
for (int i = 1; i < simplex.length; ++i) {
double[] x = simplex[i].getPoint();
for (int j = 0; j < n; ++j) {
x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]);
}
simplex[i] = new PointCostPair(x, Double.NaN);
}
evaluateSimplex();
}
}
/** Reflection coefficient. */
private double rho;
/** Expansion coefficient. */
private double khi;
/** Contraction coefficient. */
private double gamma;
/** Shrinkage coefficient. */
private double sigma;
}