blob: 2becdbfe107c847e7a27a7c4046cd44ecb782e38 [file] [log] [blame]
/*
* Copyright 2003-2005 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis;
import org.apache.commons.math.ConvergenceException;
import org.apache.commons.math.FunctionEvaluationException;
/**
* Implements the <a href="http://mathworld.wolfram.com/BrentsMethod.html">
* Brent algorithm</a> for finding zeros of real univariate functions.
* <p>
* The function should be continuous but not necessarily smooth.
*
* @version $Revision$ $Date$
*/
public class BrentSolver extends UnivariateRealSolverImpl {
/** Serializable version identifier */
static final long serialVersionUID = 3350616277306882875L;
/**
* Construct a solver for the given function.
*
* @param f function to solve.
*/
public BrentSolver(UnivariateRealFunction f) {
super(f, 100, 1E-6);
}
/**
* Find a zero in the given interval.
* <p>
* Throws <code>ConvergenceException</code> if the values of the function
* at the endpoints of the interval have the same sign.
*
* @param min the lower bound for the interval.
* @param max the upper bound for the interval.
* @param initial the start value to use (ignored).
* @return the value where the function is zero
* @throws ConvergenceException the maximum iteration count is exceeded
* @throws FunctionEvaluationException if an error occurs evaluating
* the function
* @throws IllegalArgumentException if initial is not between min and max
*/
public double solve(double min, double max, double initial)
throws ConvergenceException, FunctionEvaluationException {
return solve(min, max);
}
/**
* Find a zero in the given interval.
* <p>
* Requires that the values of the function at the endpoints have opposite
* signs. An <code>IllegalArgumentException</code> is thrown if this is not
* the case.
*
* @param min the lower bound for the interval.
* @param max the upper bound for the interval.
* @return the value where the function is zero
* @throws ConvergenceException if the maximum iteration count is exceeded
* @throws FunctionEvaluationException if an error occurs evaluating the
* function
* @throws IllegalArgumentException if min is not less than max or the
* signs of the values of the function at the endpoints are not opposites
*/
public double solve(double min, double max) throws ConvergenceException,
FunctionEvaluationException {
clearResult();
verifyInterval(min, max);
// Index 0 is the old approximation for the root.
// Index 1 is the last calculated approximation for the root.
// Index 2 is a bracket for the root with respect to x1.
double x0 = min;
double x1 = max;
double y0;
double y1;
y0 = f.value(x0);
y1 = f.value(x1);
// Verify bracketing
if (y0 * y1 >= 0) {
throw new IllegalArgumentException
("Function values at endpoints do not have different signs." +
" Endpoints: [" + min + "," + max + "]" +
" Values: [" + y0 + "," + y1 + "]");
}
double x2 = x0;
double y2 = y0;
double delta = x1 - x0;
double oldDelta = delta;
int i = 0;
while (i < maximalIterationCount) {
if (Math.abs(y2) < Math.abs(y1)) {
x0 = x1;
x1 = x2;
x2 = x0;
y0 = y1;
y1 = y2;
y2 = y0;
}
if (Math.abs(y1) <= functionValueAccuracy) {
// Avoid division by very small values. Assume
// the iteration has converged (the problem may
// still be ill conditioned)
setResult(x1, i);
return result;
}
double dx = (x2 - x1);
double tolerance =
Math.max(relativeAccuracy * Math.abs(x1), absoluteAccuracy);
if (Math.abs(dx) <= tolerance) {
setResult(x1, i);
return result;
}
if ((Math.abs(oldDelta) < tolerance) ||
(Math.abs(y0) <= Math.abs(y1))) {
// Force bisection.
delta = 0.5 * dx;
oldDelta = delta;
} else {
double r3 = y1 / y0;
double p;
double p1;
if (x0 == x2) {
// Linear interpolation.
p = dx * r3;
p1 = 1.0 - r3;
} else {
// Inverse quadratic interpolation.
double r1 = y0 / y2;
double r2 = y1 / y2;
p = r3 * (dx * r1 * (r1 - r2) - (x1 - x0) * (r2 - 1.0));
p1 = (r1 - 1.0) * (r2 - 1.0) * (r3 - 1.0);
}
if (p > 0.0) {
p1 = -p1;
} else {
p = -p;
}
if (2.0 * p >= 1.5 * dx * p1 - Math.abs(tolerance * p1) ||
p >= Math.abs(0.5 * oldDelta * p1)) {
// Inverse quadratic interpolation gives a value
// in the wrong direction, or progress is slow.
// Fall back to bisection.
delta = 0.5 * dx;
oldDelta = delta;
} else {
oldDelta = delta;
delta = p / p1;
}
}
// Save old X1, Y1
x0 = x1;
y0 = y1;
// Compute new X1, Y1
if (Math.abs(delta) > tolerance) {
x1 = x1 + delta;
} else if (dx > 0.0) {
x1 = x1 + 0.5 * tolerance;
} else if (dx <= 0.0) {
x1 = x1 - 0.5 * tolerance;
}
y1 = f.value(x1);
if ((y1 > 0) == (y2 > 0)) {
x2 = x0;
y2 = y0;
delta = x1 - x0;
oldDelta = delta;
}
i++;
}
throw new ConvergenceException("Maximum number of iterations exceeded.");
}
}