blob: 03ee790472913012e209cf2c147576ab90900076 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.solvers;
import org.apache.commons.math3.analysis.QuinticFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.function.Expm1;
import org.apache.commons.math3.analysis.function.Sin;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
/**
* Test case for {@link MullerSolver Muller} solver.
* <p>
* Muller's method converges almost quadratically near roots, but it can
* be very slow in regions far away from zeros. Test runs show that for
* reasonably good initial values, for a default absolute accuracy of 1E-6,
* it generally takes 5 to 10 iterations for the solver to converge.
* <p>
* Tests for the exponential function illustrate the situations where
* Muller solver performs poorly.
*
*/
public final class MullerSolverTest {
/**
* Test of solver for the sine function.
*/
@Test
public void testSinFunction() {
UnivariateFunction f = new Sin();
UnivariateSolver solver = new MullerSolver();
double min, max, expected, result, tolerance;
min = 3.0; max = 4.0; expected = FastMath.PI;
tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
FastMath.abs(expected * solver.getRelativeAccuracy()));
result = solver.solve(100, f, min, max);
Assert.assertEquals(expected, result, tolerance);
min = -1.0; max = 1.5; expected = 0.0;
tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
FastMath.abs(expected * solver.getRelativeAccuracy()));
result = solver.solve(100, f, min, max);
Assert.assertEquals(expected, result, tolerance);
}
/**
* Test of solver for the quintic function.
*/
@Test
public void testQuinticFunction() {
UnivariateFunction f = new QuinticFunction();
UnivariateSolver solver = new MullerSolver();
double min, max, expected, result, tolerance;
min = -0.4; max = 0.2; expected = 0.0;
tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
FastMath.abs(expected * solver.getRelativeAccuracy()));
result = solver.solve(100, f, min, max);
Assert.assertEquals(expected, result, tolerance);
min = 0.75; max = 1.5; expected = 1.0;
tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
FastMath.abs(expected * solver.getRelativeAccuracy()));
result = solver.solve(100, f, min, max);
Assert.assertEquals(expected, result, tolerance);
min = -0.9; max = -0.2; expected = -0.5;
tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
FastMath.abs(expected * solver.getRelativeAccuracy()));
result = solver.solve(100, f, min, max);
Assert.assertEquals(expected, result, tolerance);
}
/**
* Test of solver for the exponential function.
* <p>
* It takes 10 to 15 iterations for the last two tests to converge.
* In fact, if not for the bisection alternative, the solver would
* exceed the default maximal iteration of 100.
*/
@Test
public void testExpm1Function() {
UnivariateFunction f = new Expm1();
UnivariateSolver solver = new MullerSolver();
double min, max, expected, result, tolerance;
min = -1.0; max = 2.0; expected = 0.0;
tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
FastMath.abs(expected * solver.getRelativeAccuracy()));
result = solver.solve(100, f, min, max);
Assert.assertEquals(expected, result, tolerance);
min = -20.0; max = 10.0; expected = 0.0;
tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
FastMath.abs(expected * solver.getRelativeAccuracy()));
result = solver.solve(100, f, min, max);
Assert.assertEquals(expected, result, tolerance);
min = -50.0; max = 100.0; expected = 0.0;
tolerance = FastMath.max(solver.getAbsoluteAccuracy(),
FastMath.abs(expected * solver.getRelativeAccuracy()));
result = solver.solve(100, f, min, max);
Assert.assertEquals(expected, result, tolerance);
}
/**
* Test of parameters for the solver.
*/
@Test
public void testParameters() {
UnivariateFunction f = new Sin();
UnivariateSolver solver = new MullerSolver();
try {
// bad interval
double root = solver.solve(100, f, 1, -1);
System.out.println("root=" + root);
Assert.fail("Expecting NumberIsTooLargeException - bad interval");
} catch (NumberIsTooLargeException ex) {
// expected
}
try {
// no bracketing
solver.solve(100, f, 2, 3);
Assert.fail("Expecting NoBracketingException - no bracketing");
} catch (NoBracketingException ex) {
// expected
}
}
}