blob: c01b0fc8488b912e9c6701a8bf993b137e2ec5af [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.analysis.BivariateFunction;
import org.apache.commons.math3.distribution.UniformRealDistribution;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.junit.Assert;
import org.junit.Test;
import org.junit.Ignore;
/**
* Test case for the bicubic function.
*
* @deprecated as of 3.4 replaced by
* {@link org.apache.commons.math3.analysis.interpolation.PiecewiseBicubicSplineInterpolatingFunction}
*/
@Deprecated
public final class BicubicSplineInterpolatingFunctionTest {
/**
* Test preconditions.
*/
@Test
public void testPreconditions() {
double[] xval = new double[] {3, 4, 5, 6.5};
double[] yval = new double[] {-4, -3, -1, 2.5};
double[][] zval = new double[xval.length][yval.length];
@SuppressWarnings("unused")
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
zval, zval, zval);
double[] wxval = new double[] {3, 2, 5, 6.5};
try {
bcf = new BicubicSplineInterpolatingFunction(wxval, yval, zval, zval, zval, zval);
Assert.fail("an exception should have been thrown");
} catch (MathIllegalArgumentException e) {
// Expected
}
double[] wyval = new double[] {-4, -1, -1, 2.5};
try {
bcf = new BicubicSplineInterpolatingFunction(xval, wyval, zval, zval, zval, zval);
Assert.fail("an exception should have been thrown");
} catch (MathIllegalArgumentException e) {
// Expected
}
double[][] wzval = new double[xval.length][yval.length - 1];
try {
bcf = new BicubicSplineInterpolatingFunction(xval, yval, wzval, zval, zval, zval);
Assert.fail("an exception should have been thrown");
} catch (DimensionMismatchException e) {
// Expected
}
try {
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, wzval, zval, zval);
Assert.fail("an exception should have been thrown");
} catch (DimensionMismatchException e) {
// Expected
}
try {
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, wzval, zval);
Assert.fail("an exception should have been thrown");
} catch (DimensionMismatchException e) {
// Expected
}
try {
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, wzval);
Assert.fail("an exception should have been thrown");
} catch (DimensionMismatchException e) {
// Expected
}
wzval = new double[xval.length - 1][yval.length];
try {
bcf = new BicubicSplineInterpolatingFunction(xval, yval, wzval, zval, zval, zval);
Assert.fail("an exception should have been thrown");
} catch (DimensionMismatchException e) {
// Expected
}
try {
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, wzval, zval, zval);
Assert.fail("an exception should have been thrown");
} catch (DimensionMismatchException e) {
// Expected
}
try {
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, wzval, zval);
Assert.fail("an exception should have been thrown");
} catch (DimensionMismatchException e) {
// Expected
}
try {
bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval, zval, zval, wzval);
Assert.fail("an exception should have been thrown");
} catch (DimensionMismatchException e) {
// Expected
}
}
/**
* Test for a plane.
* <p>
* z = 2 x - 3 y + 5
*/
@Ignore@Test
public void testPlane() {
double[] xval = new double[] {3, 4, 5, 6.5};
double[] yval = new double[] {-4, -3, -1, 2, 2.5};
// Function values
BivariateFunction f = new BivariateFunction() {
public double value(double x, double y) {
return 2 * x - 3 * y + 5;
}
};
double[][] zval = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
zval[i][j] = f.value(xval[i], yval[j]);
}
}
// Partial derivatives with respect to x
double[][] dZdX = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdX[i][j] = 2;
}
}
// Partial derivatives with respect to y
double[][] dZdY = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdY[i][j] = -3;
}
}
// Partial cross-derivatives
double[][] dZdXdY = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdXdY[i][j] = 0;
}
}
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
dZdX, dZdY, dZdXdY);
double x, y;
double expected, result;
x = 4;
y = -3;
expected = f.value(x, y);
result = bcf.value(x, y);
Assert.assertEquals("On sample point",
expected, result, 1e-15);
x = 4.5;
y = -1.5;
expected = f.value(x, y);
result = bcf.value(x, y);
Assert.assertEquals("Half-way between sample points (middle of the patch)",
expected, result, 0.3);
x = 3.5;
y = -3.5;
expected = f.value(x, y);
result = bcf.value(x, y);
Assert.assertEquals("Half-way between sample points (border of the patch)",
expected, result, 0.3);
}
/**
* Test for a paraboloid.
* <p>
* z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
*/
@Ignore@Test
public void testParaboloid() {
double[] xval = new double[] {3, 4, 5, 6.5};
double[] yval = new double[] {-4, -3, -1, 2, 2.5};
// Function values
BivariateFunction f = new BivariateFunction() {
public double value(double x, double y) {
return 2 * x * x - 3 * y * y + 4 * x * y - 5;
}
};
double[][] zval = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
zval[i][j] = f.value(xval[i], yval[j]);
}
}
// Partial derivatives with respect to x
double[][] dZdX = new double[xval.length][yval.length];
BivariateFunction dfdX = new BivariateFunction() {
public double value(double x, double y) {
return 4 * (x + y);
}
};
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdX[i][j] = dfdX.value(xval[i], yval[j]);
}
}
// Partial derivatives with respect to y
double[][] dZdY = new double[xval.length][yval.length];
BivariateFunction dfdY = new BivariateFunction() {
public double value(double x, double y) {
return 4 * x - 6 * y;
}
};
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdY[i][j] = dfdY.value(xval[i], yval[j]);
}
}
// Partial cross-derivatives
double[][] dZdXdY = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdXdY[i][j] = 4;
}
}
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
dZdX, dZdY, dZdXdY);
double x, y;
double expected, result;
x = 4;
y = -3;
expected = f.value(x, y);
result = bcf.value(x, y);
Assert.assertEquals("On sample point",
expected, result, 1e-15);
x = 4.5;
y = -1.5;
expected = f.value(x, y);
result = bcf.value(x, y);
Assert.assertEquals("Half-way between sample points (middle of the patch)",
expected, result, 2);
x = 3.5;
y = -3.5;
expected = f.value(x, y);
result = bcf.value(x, y);
Assert.assertEquals("Half-way between sample points (border of the patch)",
expected, result, 2);
}
/**
* Test for partial derivatives of {@link BicubicSplineFunction}.
* <p>
* f(x, y) = &Sigma;<sub>i</sub>&Sigma;<sub>j</sub> (i+1) (j+2) x<sup>i</sup> y<sup>j</sup>
*/
@Ignore@Test
public void testSplinePartialDerivatives() {
final int N = 4;
final double[] coeff = new double[16];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
coeff[i + N * j] = (i + 1) * (j + 2);
}
}
final BicubicSplineFunction f = new BicubicSplineFunction(coeff);
BivariateFunction derivative;
final double x = 0.435;
final double y = 0.776;
final double tol = 1e-13;
derivative = new BivariateFunction() {
public double value(double x, double y) {
final double x2 = x * x;
final double y2 = y * y;
final double y3 = y2 * y;
final double yFactor = 2 + 3 * y + 4 * y2 + 5 * y3;
return yFactor * (2 + 6 * x + 12 * x2);
}
};
Assert.assertEquals("dFdX", derivative.value(x, y),
f.partialDerivativeX().value(x, y), tol);
derivative = new BivariateFunction() {
public double value(double x, double y) {
final double x2 = x * x;
final double x3 = x2 * x;
final double y2 = y * y;
final double xFactor = 1 + 2 * x + 3 * x2 + 4 * x3;
return xFactor * (3 + 8 * y + 15 * y2);
}
};
Assert.assertEquals("dFdY", derivative.value(x, y),
f.partialDerivativeY().value(x, y), tol);
derivative = new BivariateFunction() {
public double value(double x, double y) {
final double y2 = y * y;
final double y3 = y2 * y;
final double yFactor = 2 + 3 * y + 4 * y2 + 5 * y3;
return yFactor * (6 + 24 * x);
}
};
Assert.assertEquals("d2FdX2", derivative.value(x, y),
f.partialDerivativeXX().value(x, y), tol);
derivative = new BivariateFunction() {
public double value(double x, double y) {
final double x2 = x * x;
final double x3 = x2 * x;
final double xFactor = 1 + 2 * x + 3 * x2 + 4 * x3;
return xFactor * (8 + 30 * y);
}
};
Assert.assertEquals("d2FdY2", derivative.value(x, y),
f.partialDerivativeYY().value(x, y), tol);
derivative = new BivariateFunction() {
public double value(double x, double y) {
final double x2 = x * x;
final double y2 = y * y;
final double yFactor = 3 + 8 * y + 15 * y2;
return yFactor * (2 + 6 * x + 12 * x2);
}
};
Assert.assertEquals("d2FdXdY", derivative.value(x, y),
f.partialDerivativeXY().value(x, y), tol);
}
/**
* Test that the partial derivatives computed from a
* {@link BicubicSplineInterpolatingFunction} match the input data.
* <p>
* f(x, y) = 5
* - 3 x + 2 y
* - x y + 2 x<sup>2</sup> - 3 y<sup>2</sup>
* + 4 x<sup>2</sup> y - x y<sup>2</sup> - 3 x<sup>3</sup> + y<sup>3</sup>
*/
@Ignore@Test
public void testMatchingPartialDerivatives() {
final int sz = 21;
double[] val = new double[sz];
// Coordinate values
final double delta = 1d / (sz - 1);
for (int i = 0; i < sz; i++) {
val[i] = i * delta;
}
// Function values
BivariateFunction f = new BivariateFunction() {
public double value(double x, double y) {
final double x2 = x * x;
final double x3 = x2 * x;
final double y2 = y * y;
final double y3 = y2 * y;
return 5
- 3 * x + 2 * y
- x * y + 2 * x2 - 3 * y2
+ 4 * x2 * y - x * y2 - 3 * x3 + y3;
}
};
double[][] fval = new double[sz][sz];
for (int i = 0; i < sz; i++) {
for (int j = 0; j < sz; j++) {
fval[i][j] = f.value(val[i], val[j]);
}
}
// Partial derivatives with respect to x
double[][] dFdX = new double[sz][sz];
BivariateFunction dfdX = new BivariateFunction() {
public double value(double x, double y) {
final double x2 = x * x;
final double y2 = y * y;
return - 3 - y + 4 * x + 8 * x * y - y2 - 9 * x2;
}
};
for (int i = 0; i < sz; i++) {
for (int j = 0; j < sz; j++) {
dFdX[i][j] = dfdX.value(val[i], val[j]);
}
}
// Partial derivatives with respect to y
double[][] dFdY = new double[sz][sz];
BivariateFunction dfdY = new BivariateFunction() {
public double value(double x, double y) {
final double x2 = x * x;
final double y2 = y * y;
return 2 - x - 6 * y + 4 * x2 - 2 * x * y + 3 * y2;
}
};
for (int i = 0; i < sz; i++) {
for (int j = 0; j < sz; j++) {
dFdY[i][j] = dfdY.value(val[i], val[j]);
}
}
// Partial cross-derivatives
double[][] d2FdXdY = new double[sz][sz];
BivariateFunction d2fdXdY = new BivariateFunction() {
public double value(double x, double y) {
return -1 + 8 * x - 2 * y;
}
};
for (int i = 0; i < sz; i++) {
for (int j = 0; j < sz; j++) {
d2FdXdY[i][j] = d2fdXdY.value(val[i], val[j]);
}
}
BicubicSplineInterpolatingFunction bcf
= new BicubicSplineInterpolatingFunction(val, val, fval, dFdX, dFdY, d2FdXdY);
double x, y;
double expected, result;
final double tol = 1e-12;
for (int i = 0; i < sz; i++) {
x = val[i];
for (int j = 0; j < sz; j++) {
y = val[j];
expected = dfdX.value(x, y);
result = bcf.partialDerivativeX(x, y);
Assert.assertEquals(x + " " + y + " dFdX", expected, result, tol);
expected = dfdY.value(x, y);
result = bcf.partialDerivativeY(x, y);
Assert.assertEquals(x + " " + y + " dFdY", expected, result, tol);
expected = d2fdXdY.value(x, y);
result = bcf.partialDerivativeXY(x, y);
Assert.assertEquals(x + " " + y + " d2FdXdY", expected, result, tol);
}
}
}
/**
* Interpolating a plane.
* <p>
* z = 2 x - 3 y + 5
*/
@Test
public void testInterpolation1() {
final int sz = 21;
double[] xval = new double[sz];
double[] yval = new double[sz];
// Coordinate values
final double delta = 1d / (sz - 1);
for (int i = 0; i < sz; i++) {
xval[i] = -1 + 15 * i * delta;
yval[i] = -20 + 30 * i * delta;
}
// Function values
BivariateFunction f = new BivariateFunction() {
public double value(double x, double y) {
return 2 * x - 3 * y + 5;
}
};
double[][] zval = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
zval[i][j] = f.value(xval[i], yval[j]);
}
}
// Partial derivatives with respect to x
double[][] dZdX = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdX[i][j] = 2;
}
}
// Partial derivatives with respect to y
double[][] dZdY = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdY[i][j] = -3;
}
}
// Partial cross-derivatives
double[][] dZdXdY = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdXdY[i][j] = 0;
}
}
final BivariateFunction bcf
= new BicubicSplineInterpolatingFunction(xval, yval, zval,
dZdX, dZdY, dZdXdY);
double x, y;
final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
final UniformRealDistribution distX
= new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
final UniformRealDistribution distY
= new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
final int numSamples = 50;
final double tol = 6;
for (int i = 0; i < numSamples; i++) {
x = distX.sample();
for (int j = 0; j < numSamples; j++) {
y = distY.sample();
// System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y));
Assert.assertEquals(f.value(x, y), bcf.value(x, y), tol);
}
// System.out.println();
}
}
/**
* Interpolating a paraboloid.
* <p>
* z = 2 x<sup>2</sup> - 3 y<sup>2</sup> + 4 x y - 5
*/
@Test
public void testInterpolation2() {
final int sz = 21;
double[] xval = new double[sz];
double[] yval = new double[sz];
// Coordinate values
final double delta = 1d / (sz - 1);
for (int i = 0; i < sz; i++) {
xval[i] = -1 + 15 * i * delta;
yval[i] = -20 + 30 * i * delta;
}
// Function values
BivariateFunction f = new BivariateFunction() {
public double value(double x, double y) {
return 2 * x * x - 3 * y * y + 4 * x * y - 5;
}
};
double[][] zval = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
zval[i][j] = f.value(xval[i], yval[j]);
}
}
// Partial derivatives with respect to x
double[][] dZdX = new double[xval.length][yval.length];
BivariateFunction dfdX = new BivariateFunction() {
public double value(double x, double y) {
return 4 * (x + y);
}
};
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdX[i][j] = dfdX.value(xval[i], yval[j]);
}
}
// Partial derivatives with respect to y
double[][] dZdY = new double[xval.length][yval.length];
BivariateFunction dfdY = new BivariateFunction() {
public double value(double x, double y) {
return 4 * x - 6 * y;
}
};
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdY[i][j] = dfdY.value(xval[i], yval[j]);
}
}
// Partial cross-derivatives
double[][] dZdXdY = new double[xval.length][yval.length];
for (int i = 0; i < xval.length; i++) {
for (int j = 0; j < yval.length; j++) {
dZdXdY[i][j] = 4;
}
}
BivariateFunction bcf = new BicubicSplineInterpolatingFunction(xval, yval, zval,
dZdX, dZdY, dZdXdY);
double x, y;
final RandomGenerator rng = new Well19937c(1234567L); // "tol" depends on the seed.
final UniformRealDistribution distX
= new UniformRealDistribution(rng, xval[0], xval[xval.length - 1]);
final UniformRealDistribution distY
= new UniformRealDistribution(rng, yval[0], yval[yval.length - 1]);
final double tol = 224;
for (int i = 0; i < sz; i++) {
x = distX.sample();
for (int j = 0; j < sz; j++) {
y = distY.sample();
// System.out.println(x + " " + y + " " + f.value(x, y) + " " + bcf.value(x, y));
Assert.assertEquals(f.value(x, y), bcf.value(x, y), tol);
}
// System.out.println();
}
}
@Test
public void testIsValidPoint() {
final double xMin = -12;
final double xMax = 34;
final double yMin = 5;
final double yMax = 67;
final double[] xval = new double[] { xMin, xMax };
final double[] yval = new double[] { yMin, yMax };
final double[][] f = new double[][] { { 1, 2 },
{ 3, 4 } };
final double[][] dFdX = f;
final double[][] dFdY = f;
final double[][] dFdXdY = f;
final BicubicSplineInterpolatingFunction bcf
= new BicubicSplineInterpolatingFunction(xval, yval, f,
dFdX, dFdY, dFdXdY);
double x, y;
x = xMin;
y = yMin;
Assert.assertTrue(bcf.isValidPoint(x, y));
// Ensure that no exception is thrown.
bcf.value(x, y);
x = xMax;
y = yMax;
Assert.assertTrue(bcf.isValidPoint(x, y));
// Ensure that no exception is thrown.
bcf.value(x, y);
final double xRange = xMax - xMin;
final double yRange = yMax - yMin;
x = xMin + xRange / 3.4;
y = yMin + yRange / 1.2;
Assert.assertTrue(bcf.isValidPoint(x, y));
// Ensure that no exception is thrown.
bcf.value(x, y);
final double small = 1e-8;
x = xMin - small;
y = yMax;
Assert.assertFalse(bcf.isValidPoint(x, y));
// Ensure that an exception would have been thrown.
try {
bcf.value(x, y);
Assert.fail("OutOfRangeException expected");
} catch (OutOfRangeException expected) {}
x = xMin;
y = yMax + small;
Assert.assertFalse(bcf.isValidPoint(x, y));
// Ensure that an exception would have been thrown.
try {
bcf.value(x, y);
Assert.fail("OutOfRangeException expected");
} catch (OutOfRangeException expected) {}
}
}